Introduction to Electrochemical Energy Storage

  • Sen Xin
  • Hongcai Gao
  • Yutao Li
  • Yu-Guo GuoEmail author


Facing the challenge from a fast growth in global primary energy consumption during the last two decades, energy conversion and storage with high efficiency and sustainability is demanded. This chapter intends to discuss the broad picture of world energy utilization, and introduce various types of energy storage technologies, their advantages/disadvantages, research at the present stage and sustainability for the future. Specifically, this chapter will introduce the basic working principles of crucial electrochemical energy storage devices (e.g., primary batteries, rechargeable batteries, pseudocapacitors and fuel cells), and key components/materials for these devices.



Electrical double-layer capacitor


Superconducting magnetic energy storage


Nippon Electric Company


Direct current


Electrochemical energy storage


Thermal energy storage




Nickel-metal hydride


Standard hydrogen electrode


Valence band


Conduction band


Lowest unoccupied molecular orbital


Highest occupied molecular orbital


  1. 1.
    Anonymous. (2018). BP statistical review of world energy (pp. 1–56). London, UK: BP p.l.c.Google Scholar
  2. 2.
    Sato, M. (1990). Thermochemistry of the formation of fossil fuels. In R. J. Spencer & I.-M. Chou (Eds.), Fluid–mineral interactions: A tribute to H. P. Eugster (pp. 271–283). Geochemical Society.Google Scholar
  3. 3.
    Gőğűş, Y. A. (2009). Mechanical energy storage. In Y. Gogus (Ed.), Energy storage systems: Encyclopedia of life support systems (pp. 190–226). EOLSS Publishers/UNESCO.Google Scholar
  4. 4.
    Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334, 928–935.CrossRefGoogle Scholar
  5. 5.
    Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586–598.CrossRefGoogle Scholar
  6. 6.
    Yang, C.-J. (2016). Pumped hydroelectric storage. In T. M. Letcher (Ed.), Storing energy: With special reference to renewable energy sources (pp. 25–38). Elsevier.Google Scholar
  7. 7.
    Venkataramani, G., Parankusam, P., Ramalingam, V., et al. (2016). A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renewable and Sustainable Energy Reviews, 62, 895–907.CrossRefGoogle Scholar
  8. 8.
    Luo, X., Wang, J., Dooner, M., et al. (2014). Overview of current development in compressed air energy storage technology. Energy Procedia, 62, 603–611.CrossRefGoogle Scholar
  9. 9.
    Amiryar, M. E., & Pullen, K. R. (2017). A review of flywheel energy storage system technologies and their applications. Applied Sciences, 7, 286.CrossRefGoogle Scholar
  10. 10.
    Mousavi, G. S. M., Faraji, F., Majazi, A., et al. (2017). A comprehensive review of Flywheel Energy Storage System technology. Renewable and Sustainable Energy Reviews, 67, 477–490.CrossRefGoogle Scholar
  11. 11.
    Burt, R., Birkett, G., & Zhao, X. S. (2014). A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics, 16, 6519–6538.CrossRefGoogle Scholar
  12. 12.
    Tixador, P. (2008). Superconducting magnetic energy storage: Status and perspective. Paper presented at: IEEE/CSC & ESAS European Superconductivity News Forum (ESNF).Google Scholar
  13. 13.
    Vulusala, G. V. S., & Madichetty, S. (2018). Application of superconducting magnetic energy storage in electrical power and energy systems: A review. International Journal of Energy Research, 42, 358–368.Google Scholar
  14. 14.
    Pandolfo, T., Ruiz, V., Sivakkumar, S., et al. (2013). General properties of electrochemical capacitors. In F. Beguin & E. Frackowiak (Eds.), Supercapacitors: Materials, systems, and applications (pp. 69–109). Wiley.Google Scholar
  15. 15.
    Shao, Y., El-Kady, M. F., Sun, J., et al. (2018). Design and mechanisms of asymmetric supercapacitors. Chemical Reviews, 118, 9233–9280.CrossRefGoogle Scholar
  16. 16.
    Ho, J., Jow, T. R., & Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26, 20–25.CrossRefGoogle Scholar
  17. 17.
    Both, J. (2015). Electrolytic capacitors, 1890 to 1925: Early history and basic principle. IEEE Electrical Insulation Magazine, 31, 22–29.CrossRefGoogle Scholar
  18. 18.
    Ulaby, F. T., & Ravaioli, U. (2015). Fundamentals of applied electromagnetics (7th ed.). Pearson Education Dorling Kindersley.Google Scholar
  19. 19.
    Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7, 845–854.CrossRefGoogle Scholar
  20. 20.
    Helmholtz, H. V. (1853). On the conservation of force. Annals of Physics, 165, 211.CrossRefGoogle Scholar
  21. 21.
    Gouy, G. (1910). Constitution of the electric charge at the surface of an electrolyte. Comptes Rendus, 149, 654–657.Google Scholar
  22. 22.
    Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Philosophical Magazine, 25, 475–481.Google Scholar
  23. 23.
    Stern, O. Z. (1924). Theory of the electrical double layer. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 30, 508–516.Google Scholar
  24. 24.
    Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 41, 441–501.CrossRefGoogle Scholar
  25. 25.
    Becker, H. I. (1957). Low voltage electrolytic capacitor. U.S. Patent No. 2,800,616. United States: General Electric Co.Google Scholar
  26. 26.
    Rightmire, R. A. (1966). Electrical energy storage apparatus. U.S. Patent No. 3,288,641. United States: Standard Oil Co.Google Scholar
  27. 27.
    File, J., & Mills, R. G. (1963). Observation of persistent current in a superconducting solenoid. Physical Review Letters, 10, 93–96.CrossRefGoogle Scholar
  28. 28.
    Buckles, W., & Hassenzahl, W. V. (2000). Superconducting magnetic energy storage. IEEE Power Engineering Review, 20, 16–20.CrossRefGoogle Scholar
  29. 29.
    Luongo, C. A. (1996). Superconducting storage systems: An overview. IEEE Transactions on Magnetics, 32, 2214–2223.CrossRefGoogle Scholar
  30. 30.
    Scrosati, B. (2011). History of lithium batteries. Journal of Solid State Electrochemistry, 15, 1623–1630.CrossRefGoogle Scholar
  31. 31.
    Trasatti, S., & Buzzanca, G. (1971). Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 29, A1–A5.CrossRefGoogle Scholar
  32. 32.
    Conway, B. E. (1991). Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society, 138, 1539–1548.CrossRefGoogle Scholar
  33. 33.
    Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7, 1597–1614.CrossRefGoogle Scholar
  34. 34.
    Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66, 1–14.CrossRefGoogle Scholar
  35. 35.
    Miller, J. R. (2013). Market and applications of electrochemical capacitors. In F. Béguin & E. Frąckowiak (Eds.), Supercapacitors: Materials, systems, and applications (pp. 509–526). Wiley.Google Scholar
  36. 36.
    Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., et al. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111, 3577–3613.CrossRefGoogle Scholar
  37. 37.
    Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46, 1053–1061.CrossRefGoogle Scholar
  38. 38.
    Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–603.CrossRefGoogle Scholar
  39. 39.
    Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451, 652–657.CrossRefGoogle Scholar
  40. 40.
    Manzetti, S., & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004–1012.CrossRefGoogle Scholar
  41. 41.
    Kim, J., Kumar, R., Bandodkar, A. J., et al. (2017). Advanced materials for printed wearable electrochemical devices: A review. Advanced Electronic Materials, 3, 1600260.CrossRefGoogle Scholar
  42. 42.
    You, Y., Celio, H., Li, J., et al. (2018). Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angewandte Chemie International Edition, 57, 6480–6485.CrossRefGoogle Scholar
  43. 43.
    You, Y., & Manthiram, A. (2018). Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 8, 1701785.CrossRefGoogle Scholar
  44. 44.
    Zhang, Y.-C., You, Y., Xin, S., et al. (2016). Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 25, 120–127.CrossRefGoogle Scholar
  45. 45.
    Yin, Y.-X., Xin, S., Wan, L.-J., et al. (2011). Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 115, 14148–14154.CrossRefGoogle Scholar
  46. 46.
    Xu, R., Wang, G., Zhou, T., et al. (2017). Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 39, 253–261.CrossRefGoogle Scholar
  47. 47.
    Xu, Q., Sun, J.-K., Yu, Z.-L., et al. (2018). SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Advanced Materials, 30, 1707430.CrossRefGoogle Scholar
  48. 48.
    Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.CrossRefGoogle Scholar
  49. 49.
    Xin, S., Gu, L., Zhao, N.-H., et al. (2012). Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.CrossRefGoogle Scholar
  50. 50.
    Xin, S., Yin, Y.-X., Guo, Y.-G., et al. (2014). A high-energy room-temperature sodium-sulfur battery. Advanced Materials, 26, 1261–1265.CrossRefGoogle Scholar
  51. 51.
    You, Y., Yao, H.-R., Xin, S., et al. (2016). Subzero-temperature cathode for a sodium-ion battery. Advanced Materials, 28, 7243–7248.CrossRefGoogle Scholar
  52. 52.
    Jin, S., Xin, S., Wang, L., et al. (2016). Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Advanced Materials, 28, 9094–9102.CrossRefGoogle Scholar
  53. 53.
    Xin, S., Yin, Y.-X., Wan, L.-J., et al. (2013). Encapsulation of sulfur in a hollow porous carbon substrate for superior Li–S batteries with long lifespan. Particle & Particle Systems Characterization, 30, 321–325.CrossRefGoogle Scholar
  54. 54.
    Xin, S., Yu, L., You, Y., et al. (2016). The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Letters, 16, 4560–4568.CrossRefGoogle Scholar
  55. 55.
    Xin, S., Guo, Y.-G., Chang, Z., et al. (2016). Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 4, 54–70.Google Scholar
  56. 56.
    Wang, Z., You, Y., Yuan, J., et al. (2016). Nickel-doped La0.8Sr0.2Mn1−xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Applied Materials & Interfaces, 8, 6520–6528.CrossRefGoogle Scholar
  57. 57.
    Xue, L., Gao, H., Zhou, W., et al. (2016). Liquid K-Na alloy anode enables dendrite-free potassium batteries. Advanced Materials, 28, 9608–9612.CrossRefGoogle Scholar
  58. 58.
    Gao, H., Xue, L., Xin, S., et al. (2017). A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angewandte Chemie International Edition, 56, 5541–5545.CrossRefGoogle Scholar
  59. 59.
    Zhou, W., Xue, L., Lü, X., et al. (2016). NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Letters, 16, 7836–7841.CrossRefGoogle Scholar
  60. 60.
    Du, X.-L., You, Y., Yan, Y., et al. (2016). Conductive carbon network inside a sulfur-impregnated carbon sponge: A bioinspired high-performance cathode for Li–S battery. ACS Applied Materials & Interfaces, 8, 22261–22269.CrossRefGoogle Scholar
  61. 61.
    Chen, Z.-H., Du, X.-L., He, J.-B., et al. (2017). Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 9, 33855–33862.CrossRefGoogle Scholar
  62. 62.
    Xin, S., You, Y., Li, H.-Q., et al. (2016). Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: A kinetically stable cathode for Li–S batteries. ACS Applied Materials & Interfaces, 8, 33704–33711.CrossRefGoogle Scholar
  63. 63.
    Xu, D.-W., Xin, S., You, Y., et al. (2016). Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. ChemNanoMat, 2, 712–718.CrossRefGoogle Scholar
  64. 64.
    Gao, H., Xin, S., Xue, L., et al. (2018). Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem, 4, 833–844.CrossRefGoogle Scholar
  65. 65.
    Gao, H., Xue, L., Xin, S., et al. (2018). A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angewandte Chemie International Edition, 57, 5449–5453.CrossRefGoogle Scholar
  66. 66.
    Zhang, J., Zhang, C., Li, W., et al. (2018). Nitrogen-doped perovskite as a bifunctional cathode catalyst for rechargeable lithium-oxygen batteries. ACS Applied Materials & Interfaces, 10, 5543–5550.CrossRefGoogle Scholar
  67. 67.
    Xue, L., Zhou, W., Xin, S., et al. (2018). Room-temperature liquid Na–K anode membranes. Angewandte Chemie International Edition, 57, 14184–14187.CrossRefGoogle Scholar
  68. 68.
    Gao, H., Seymour, I. D., Xin, S., et al. (2018). Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. Journal of the American Chemical Society, 140, 18192–18199.CrossRefGoogle Scholar
  69. 69.
    Wu, N., Yang, Z.-Z., Yao, H.-R., et al. (2015). Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie International Edition, 54, 5757–5761.CrossRefGoogle Scholar
  70. 70.
    Hu, X.-C., Shi, Y., Lang, S.-Y., et al. (2018). Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 49, 453–459.CrossRefGoogle Scholar
  71. 71.
    Denholm, P., King, J. C., Kutcher, C. F., et al. (2012). Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage. Energy Policy, 44, 301–311.CrossRefGoogle Scholar
  72. 72.
    O’Sullivan, M., Yeh, A., & Mannington, W. (2010). Renewability of geothermal resources. Geothermics, 39, 314–320.CrossRefGoogle Scholar
  73. 73.
    Rezaie, B., Reddy, B. V., & Rosen, M. A. (2017). Assessment of the thermal energy storage in Friedrichshafen district energy systems. Energy Procedia, 116, 91–105.CrossRefGoogle Scholar
  74. 74.
    Edwards, J., Bindra, H., & Sabharwall, P. (2016). Exergy analysis of thermal energy storage options with nuclear power plants. Annals of Nuclear Energy, 96, 104–111.CrossRefGoogle Scholar
  75. 75.
    Miró, L., Brückner, S., & Cabeza, L. F. (2015). Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews, 51, 847–855.CrossRefGoogle Scholar
  76. 76.
    Pantaleo, A. M., Camporeale, S. M., Miliozzi, A., et al. (2017). Thermo-economic assessment of an externally fired hybrid CSP/biomass gas turbine and organic rankine combined cycle. Energy Procedia, 105, 174–181.CrossRefGoogle Scholar
  77. 77.
    Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341–378.CrossRefGoogle Scholar
  78. 78.
    Cabeza, L. F., Martorell, I., Miró, L., et al. (2015). Introduction to thermal energy storage (TES) systems. In L. F. Cabeza (Ed.), Advances in thermal energy storage systems (pp. 1–28). Woodhead Publishing.Google Scholar
  79. 79.
    Kolpak, A. M., & Grossman, J. C. (2011). Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Letters, 11, 3156–3162.CrossRefGoogle Scholar
  80. 80.
    Atkins, P., & Paula, J. D. (2014). Physical chemistry: Thermodynamics, structure, and change (10th ed.). New York: W. H. Freeman and Company.Google Scholar
  81. 81.
    Linden, D. (2001). Primary batteries—Introduction. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 1–21). McGraw-Hill Education.Google Scholar
  82. 82.
    Linden, D., & Reddy, T. B. (2010). An introduction to primary batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 1–18). McGraw-Hill Education.Google Scholar
  83. 83.
    Brooke Schumm, J. (2010). Zinc-carbon batteries—Leclanché and zinc chloride cell systems. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 1–41). McGraw-Hill Education.Google Scholar
  84. 84.
    Sayilgan, E., Kukrer, T., Civelekoglu, G., et al. (2009). A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy, 97, 158–166.CrossRefGoogle Scholar
  85. 85.
    Scarr, R. F., Hunter, J. C., & Slezak, P. J. (2001). Alkaline-manganese dioxide batteries. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 1–32). McGraw-Hill Education.Google Scholar
  86. 86.
    Kozawa, A., & Powers, R. A. (1972). Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells. Journal of Chemical Education, 49, 587–591.CrossRefGoogle Scholar
  87. 87.
    Goodenough, J. B., & Park, K.-S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135, 1167–1176.CrossRefGoogle Scholar
  88. 88.
    May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145–157.CrossRefGoogle Scholar
  89. 89.
    Bergstrom, S. (1952). Fiftieth anniversary: Anniversary issue on storage batteries: Nickel-cadmium batteries—Pocket type. Journal of the Electrochemical Society, 99, 248C–250C.CrossRefGoogle Scholar
  90. 90.
    Gogotsi, Y., & Penner, R. M. (2018). Energy storage in nanomaterials—Capacitive, pseudocapacitive, or battery-like? ACS Nano, 12, 2081–2083.CrossRefGoogle Scholar
  91. 91.
    El-Kady, M. F., Shao, Y., & Kaner, R. B. (2016). Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1, 16033.CrossRefGoogle Scholar
  92. 92.
    Conway, B. E. (1999). Electrochemical capacitors based on pseudocapacitance. In B. E. Conway (Ed.), Electrochemical supercapacitors: Scientific fundamentals and technological applications (pp. 221–257). Springer.Google Scholar
  93. 93.
    Kim, J. W., Augustyn, V., & Dunn, B. (2012). The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2, 141–148.CrossRefGoogle Scholar
  94. 94.
    Augustyn, V., Come, J., Lowe, M. A., et al. (2013). High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 12, 518–522.CrossRefGoogle Scholar
  95. 95.
    Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13, 2430–2440.CrossRefGoogle Scholar
  96. 96.
    Smitha, B., Sridhar, S., & Khan, A. A. (2005). Solid polymer electrolyte membranes for fuel cell applications—A review. Journal of Membrane Science, 259, 10–26.CrossRefGoogle Scholar
  97. 97.
    Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35, 9349–9384.CrossRefGoogle Scholar
  98. 98.
    Liu, H., Song, C., Zhang, L., et al. (2006). A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155, 95–110.CrossRefGoogle Scholar
  99. 99.
    Khan, S. U. M., Kainthla, R. C., & Bockris, J. O. M. (1987). The redox potential and the Fermi level in solution. The Journal of Physical Chemistry, 91, 5974–5977.CrossRefGoogle Scholar
  100. 100.
    Kittel, C. (2004). Introduction to solid state physics (8th ed.). Wiley.Google Scholar
  101. 101.
    Schmickler, W., & Santos, E. (2010). Metal and semiconductor electrodes. In Interfacial electrochemistry (pp. 9–18). Springer.Google Scholar
  102. 102.
    Gao, J., Shi, S.-Q., & Li, H. (2016). Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, 25, 018210.CrossRefGoogle Scholar
  103. 103.
    Guo, Y.-G., Hu, J.-S., & Wan, L.-J. (2008). Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 20, 2878–2887.CrossRefGoogle Scholar
  104. 104.
    Maier, J. (2005). Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Materials, 4, 805–815.CrossRefGoogle Scholar
  105. 105.
    Xin, S., You, Y., Wang, S., et al. (2017). Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects. ACS Energy Letters, 2, 1385–1394.CrossRefGoogle Scholar
  106. 106.
    Rustomji, C. S., Yang, Y., Kim, T. K., et al. (2017). Liquefied gas electrolytes for electrochemical energy storage devices. Science, 356, eaal4263.CrossRefGoogle Scholar
  107. 107.
    Lee, H., Yanilmaz, M., Toprakci, O., et al. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7, 3857–3886.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations