Advertisement

Temperature Effect on Tribo-Mechanical Properties of Dental Materials

  • C. BirleanuEmail author
  • M. Pustan
  • V. Merie
  • M. S. Pop
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)

Abstract

The dental enamel is the hardest surface of teeth. Depending on the mechanical and tribological properties of the enamel, the sustainability of the teeth can be appreciated. These properties are influenced by the mastication conditions including humidity, temperature and abrasion effects. The aim of this work it is to consider the effect of temperature on tribological and mechanical properties of restorative dental materials using advance techniques. Nanoindentation provides information about hardness and elastic modulus. The tribological investigation in this paper is summed up to measure the friction force as a function of temperature. A temperature control system is used to monitor the temperature of investigated samples in the range of 10–60 °C. For this purpose an atomic force microscope with a nanoindentation module was used for the experimental determination of the mechanical and tribological properties of the dental materials taking into account the temperature variation. These relatively non-destructive mechanical characterization techniques can help to better understand the mechanical behavior of dental materials and thus facilitate their preparation with excellent mechanical and tribological properties.

Keywords

Dental materials Nano-indentation Thermal effect Hardness Friction 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lewis, R., Dwyer-Joyce, R.: Wear of human teeth: a tribological perspective. Proc. Inst. Mech. Eng. J 219(1), 1–18 (2005)CrossRefGoogle Scholar
  2. 2.
    Srivicharnkul, P., et al.: Physical properties of root cementum: part 3. hardness and elastic modulus after application of light and heavy forces. Am J Orthod Dentofacial Orthop 127(2), 68–176 (2005)CrossRefGoogle Scholar
  3. 3.
    Eick, J., et al.: Current concepts on adhesion to dentin. Crit. Rev. Oral Biol. Med. 8(3), 306–335 (1997)CrossRefGoogle Scholar
  4. 4.
    Caldwell, R.C., et al.: Microhardness studies of intact surface enamel. J. Dent. Res. 36(5), 732–738 (1957)CrossRefGoogle Scholar
  5. 5.
    Meckel, A., Griebstein, W., Neal, R.: Structure of mature human dental enamel as observed by electron microscopy. Arch. Oral Biol. 10(5), 775–783 (1965)CrossRefGoogle Scholar
  6. 6.
    Urabe, I., et al.: Physical properties of the dentin-enamel junction region. Am. J. Dent. 13(3), 129–135 (2000)Google Scholar
  7. 7.
    Rasmussen, S.T., et al.: Fracture properties of human enamel and dentin. J. Dent. Res. 55(1), 154–164 (1976)CrossRefGoogle Scholar
  8. 8.
    Hassan, R., Caputo, A., Bunshah, R.: Fracture toughness of human enamel. J. Dent. Res. 60(4), 20–827 (1981)CrossRefGoogle Scholar
  9. 9.
    Xu, H., et al.: Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 77(3), 472–480 (1998)CrossRefGoogle Scholar
  10. 10.
    Giannini, M., Soares, C.J., De Carvalho, R.M.: Ultimate tensile strength of tooth structures. Dent. Mater. J. 20(4), 322–329 (2004)CrossRefGoogle Scholar
  11. 11.
    Langeland, K.: Tissue response to dental caries. Dent. Traumatol. 3(4), 149–171 (1987)CrossRefGoogle Scholar
  12. 12.
    Birleanu, C., et al.: Nanomechanical investigation of dental restorative materials using atomic force microscopy. Acta Tech. Napocensis Ser. Appl. Math. Mech. Eng. 56(4) (2013)Google Scholar
  13. 13.
    Kinney, J., et al.: Hardness and Young’s modulus of human peritubular and intertubular dentine. Arch. Oral Biol. 41(1), 9–13 (1996)CrossRefGoogle Scholar
  14. 14.
    Angker, L., Swain, M.: Nanoindentation: application to dental hard tissue investigations. J. Mater. Res. 21(8), 1893–1905 (2006)CrossRefGoogle Scholar
  15. 15.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRefGoogle Scholar
  16. 16.
    Al-Haik, M.S., et al.: Investigation of the nanomechanical and tribological properties of dental materials. Int J Theor Appl Multiscale Mech 1(1), 1–15 (2009)CrossRefGoogle Scholar
  17. 17.
    Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  18. 18.
    Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng. Sci. 197(1), 53–59 (1983)CrossRefGoogle Scholar
  19. 19.
    Dowson, D.: A tribological day. Proc. Inst. Mech. Eng. J 223(3), 61–273 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of Material ScienceTechnical University of Cluj-NapocaCluj-NapocaRomania
  3. 3.The Emergency Military Hospital “Dr. Constatin Papilian”Cluj-NapocaRomania

Personalised recommendations