Advertisement

A New Proposal for Solving Equations of Angular Contact Ball Bearing Using Evolutionary Techniques

  • A. GheorghitaEmail author
  • M. Turnea
  • M. Ilea
  • M. Rotariu
  • G. Constantin
  • D. Arotaritei
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)

Abstract

Heat generation in angular contact bearings, dynamic analysis and optimization of high speed spindle bearings require to know the load-displacement values in for bearing components. The equations that describe the relationship among preload, speed, and contact angle are solved usually using iterative methods. A new method that uses genetic algorithms is proposed to solve the algebraic system with multiple dependencies with a good precision in evaluation of angular contact angle.

Keywords

Angular-contact ball bearing Analytical model System of algebraic equations Genetic algorithms 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Harris, T.A.: Rolling Bearing Analysis, 4th edn. Wiley, New York (2001)Google Scholar
  2. 2.
    Cao, Y., Altintas, Y.: A general method for the modeling of spindle-bearing systems. J. Mech. Des. 126, 1089–1104 (2005)CrossRefGoogle Scholar
  3. 3.
    Bossmanns, B., Tu, J.F.: A power flow model for high speed motorized spindles-heat generation characterization. J. Manuf. Sci. Eng. 123, 494–505 (2001)CrossRefGoogle Scholar
  4. 4.
    Brecher, C., Shneor, Y., Neus, S., Bakarinow, K., Fey, M.: Thermal behavior of externally driven spindle: experimental study and modelling. Engineering 7, 73–92 (2015)CrossRefGoogle Scholar
  5. 5.
    Than, V.-T., Huang, J.H.: Nonlinear thermal effects on high-speed spindle bearings subjected to preload. Tribol. Int. 96, 361–372 (2016)CrossRefGoogle Scholar
  6. 6.
    Bossmanns, B., Tu, J.F.: A thermal model for high speed motorized spindles. Int. J. Mach. Tools Manuf. 39, 1345–1366 (1999)CrossRefGoogle Scholar
  7. 7.
    Bossmanns, B.: Thermo-mechanical modeling of motorized spindle systems for high speed milling. Ph.D. thesis, Purdue University (1997)Google Scholar
  8. 8.
    Samadli, V.: Rotor-bearing system dynamics of a high speed micro end mill spindle. Ph.D. thesis, University of Florida (2006)Google Scholar
  9. 9.
    Yanfang, D., Zude, Z., Mingyao, L.: A new model based machine tool spindle bearing preload optimization method. Int. J. Eng. Technol. 6(11), 416–423 (2016)Google Scholar
  10. 10.
    Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15(2), 243–252 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Antoine, J.-F., Abba, G., Molinari, A.: A new proposal for explicit angle calculation in angular contact ball bearing. J. Mech. Des. 128(2), 468–478 (2005)CrossRefGoogle Scholar
  12. 12.
    Goulianas, K., Margaris, A., Refanidis, I., Diamantaras, K., Papadimitriou, T.: A back propagation-type neural network architecture for solving the complete n × n nonlinear algebraic system of equations. Adv. Pure Math. 6, 455–480 (2016)CrossRefGoogle Scholar
  13. 13.
    Min, Z., Li, Y.: A novel ant colony algorithm of solving nonlinear equations group. IERI Procedia 2, 775–780 (2012)CrossRefGoogle Scholar
  14. 14.
    Jaberipour, M., Khorrama, E., Karimi, B.: Particle swarm algorithm for solving systems of nonlinear equations. Comput. Math. Appl. 62, 566–576 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Djerou, L., Khelil, N., Aichouche, S.: Artificial bee colony algorithm for solving initial value problems. Commun. Math. Appl. 8(2), 119–125 (2017)Google Scholar
  16. 16.
    Pourrajabian, A., Ebrahimi, R., Mirzaei, M., Shams, M.: Applying genetic algorithms for solving nonlinear algebraic equations. Appl. Math. Comput. 219, 11483–11494 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional (1989)Google Scholar
  19. 19.
    Price, K., Storn, R.M.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. Gheorghita
    • 1
    Email author
  • M. Turnea
    • 2
  • M. Ilea
    • 2
  • M. Rotariu
    • 2
  • G. Constantin
    • 1
  • D. Arotaritei
    • 2
  1. 1.Polytechnic University of BucharestBucharestRomania
  2. 2.Grigore T. Popa University of Medicine and Pharmacy IasiIasiRomania

Personalised recommendations