Advertisement

Automated Collagen Segmentation from Masson’s Trichrome Stained ImagesPreliminary Results

  • M. S. ȘerbănescuEmail author
  • R. V. Teică
  • M. Tărâță
  • D. Georgescu
  • D. O. Alexandru
  • N. C. Manea
  • W. Wolf
  • R. M. Pleșea
  • I. E. Pleșea
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)

Abstract

We propose a new algorithm for automated collagen segmentation from Masson’s trichrome stained images with two steps: color transfer from a known, optimum-stained image, followed by k-means clustering. The algorithm’s output is scored by two proficient pathologists. Results show a good segmentation output (~60%) and strong agreement on pathologist’s opinion on a good segmentation (Cohen’s kappa = 0.8063).

Keywords

Collagen segmentation Masson’s trichrome K-means clustering Color transfer between images 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pernar, C.H., Ebot, E.M., Wilson, K.M., et al.: The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. a030361 (2018).  https://doi.org/10.1101/cshperspect.a030361
  2. 2.
    Stoiculescu, A., Plesea, I.E., Pop, O.T., et al.: Correlations between intratumoral interstitial fibrillary network and tumoral architecture in prostatic adenocarcinoma. Rom. J. Morphol. Embryol. 53(4), 941–950 (2012)Google Scholar
  3. 3.
    Mitroi, G., Plesea, R.M., Pop, O.T., et al.: Correlations between intratumoral interstitial fibrillary network and vascular network in Srigley patterns of prostate adenocarcinoma. Rom. J. Morphol. Embryol. 56(4), 1319–1328 (2015)Google Scholar
  4. 4.
    Plesea, I.E., Stoiculescu, A., Serbanescu, M.: Correlations between intratumoral vascular network and tumoral architecture in prostatic adenocarcinoma. Rom. J. Morphol. Embryol. 54(2), 299–308 (2013)Google Scholar
  5. 5.
    Plesea, R.M., Serbanescu, M.S., Alexandru, D.O., et al.: Correlations between intratumoral interstitial fibrillary network and vascular network in Gleason patterns of prostate adenocarcinoma. Curr. Health Sci. J. 41(4), 345–354 (2015)Google Scholar
  6. 6.
    Wulff, S., Hafer, L., Cheles, M., et al.: Guide to Special Stains. Fort Collins, Colorado, USA, pp. 41–42 (2004)Google Scholar
  7. 7.
  8. 8.
    Reinhard, E., Adhikhmin, M., Gooch, B., et al.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar
  9. 9.
    Gleason, D.F.: Histologic grading and staging of prostatic carcinoma. In: Tannenbaum, M. (ed.) Urologic Pathology: The prostate. Lea & Febiger, Philadelphia, pp. 171–197 (1977)Google Scholar
  10. 10.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, California, USA, pp. 281–297 (1976)Google Scholar
  11. 11.
    Steinhaus, H.: Sur la division des corps materiels en parties. Bulletin de l’Academie Polonaise des Sciences Classe III IV(12), 801–804 (1956)Google Scholar
  12. 12.
    Serbanescu, M.S., Plesea, I.E.: A hardware approach for histological and histopathological digital image stain normalization. Rom. J. Morphol. Embryol. 56(2S), 735–741 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. S. Șerbănescu
    • 1
    Email author
  • R. V. Teică
    • 1
  • M. Tărâță
    • 1
  • D. Georgescu
    • 1
  • D. O. Alexandru
    • 1
  • N. C. Manea
    • 1
  • W. Wolf
    • 2
  • R. M. Pleșea
    • 3
  • I. E. Pleșea
    • 4
  1. 1.Medical Informatics & BiostatisticsUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
  2. 2.EIT 3 - Institut Für InformationstechnikUniversität der BundeswehrMunichGermany
  3. 3.Medical GeneticsUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
  4. 4.PathologyUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania

Personalised recommendations