Comparative Effect of Ethyl Urethane and Cycloheximide in Lepidium sativum L. Seed Germination and Radicle Growth

  • O. Viman
  • K. Balla
  • L. HolonecEmail author
  • M. Tămaș
  • D. L. Dumitrașcu
  • V. Șandor
  • L. Nedelcu
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)


The seed germination test of Lepidium sativum L. offers intrinsic data obtained within this complex process and details on the mechanisms of action of two pharmacologically distinct substances, ethyl urethane, a general anesthetic and cycloheximide, an inhibitor of protein biosynthesis in eukaryotes. The rate of germination of the species gives the test efficiency and the possibility of multiple experimental versions at identical time periods. Testing was carried out in aqueous media consisting of filter paper soaked with water or aqueous solutions of the two substances. It was evaluated the frequency of seed germination and the length of the radicle at 24 and 48 h after exposure. Comparison of results was made by nonparametric and parametric statistical tests to reject the null hypothesis at p < 0.05. Germination in the control group was over 90% and the length of rootlets was over 8 mm at 48 h. Ethyl urethane 1% delayed the germination, but it reached in 48 h at values close to those of the control group. The length of the radicle was significantly reduced, less than 3 mm. At this concentration, ethyl urethane clearly, but reversibly, inhibits germination. The germination is almost blocked at concentrations of 10% ethyl urethane, the effect being irreversible and the length of rootlets is at the limit of measurement. Cycloheximide 0.01% reduces to a greater extent than ethyl urethane 1% the germination frequency and length of rootlets; the action is irreversible. Inhibitory effects on germination of ethyl urethane and cycloheximide, substances with different pharmacological targets, show the importance of the general processes of cell excitability and the participation of specific proteins in the cascade phenomenon of germination in plants.


Germination Lepidium sativum L. Ethyl urethane Cycloheximide 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Angelovici, R., Galili, G., Fernie, A.R., Fait, A.: Seed desiccation: a bridge between maturation and germination. Trends Plant Sci. 15, 211–218 (2010)Google Scholar
  2. 2.
    Miernyk, J.A., Hajduch, M.: Seed proteomics. J Proteomics. 74, 389–400 (2011)Google Scholar
  3. 3.
    Miransari, M., Smith, D.L.: Plant hormones and seed germination. Environ. Exp. Bot. 99, 110–121 (2014)Google Scholar
  4. 4.
    Khan, A.A.: Cytokinins: permissive role in seed germination. Science 171, 853–859 (1971)Google Scholar
  5. 5.
    Rajjou, L., Duval, M., Gallardo, K., et al.: Seed germination and vigor. Annu. Rev. Plant Biol. 63, 507–533 (2012)Google Scholar
  6. 6.
    Tan, L., Chen, S., Wang, T., Dai, S.: Proteomic insights into seed germination in response to environmental factors. Proteomics 13(12–13), 1850–1870 (2013)Google Scholar
  7. 7.
    Pitea, M., Mărie, A., Cristea, R., Tămaș, M., Arieșan, V.: Untersuchungen über sulfamido–urethane. Arch. Pharm. (Weinheim) 306, 702–706 (1973)Google Scholar
  8. 8.
    Chavan, B.G., Bhide, S.V.: Binding of urethane with macromolecules from all organelles. J. Natl. Cancer Inst. 50, 1459–1461 (1973)Google Scholar
  9. 9.
    Schneider-Poetsch, T., Ju, J., Eyler, D.E., et al.: Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217 (2010)Google Scholar
  10. 10.
    Sîrbu, C., Oprea, A., Patriche, C.V., Samuil, C., Vîntu, V.: Alien species of Lepidium in the flora of Romania: invasion history and habitat preference. Not. Bot. Horti. Agrobo. 42, 239–247 (2014)Google Scholar
  11. 11.
    Șandor, V.L., Katalin, B., Cuparencu, B., Tămaș, M., Kory, M., Gavriș, A.D. (1994) The inhibition of germination by ethyl urethane. In: Al X-lea Congres Național de Farmacie, Cluj-Napoca. Rezumatele Lucrărilor Științifice, pp. 414–415 (1994)Google Scholar
  12. 12.
    Garreau de Loubresse, N., Prokhorova, I., Holtkamp, W., Rodnina, M.V., Yusupova, G., Yusupov, M.: Structural basis of the inhibition of the eukaryotic ribosome. Nature 513(7519), 517–522 (2014)Google Scholar
  13. 13.
    Griswold, D.E., Alessi, E.F.: Inhibition of carrageenin induced inflammation by urethane anesthesis in adrenalectomized and sham operated rats. J. Pharmacol. Methods 8, 161–164 (1982)Google Scholar
  14. 14.
    Oksvold, M.P., Pederson, N.M., Forfang, L., Smeland, E.B.: Effect of cycloheximide on epidermal growth factor receptor trafficking and signaling. FEBS Lett. 586, 3575–3581 (2012)Google Scholar
  15. 15.
    Ellis, R.J., MacDonald, I.R.: Specificity of cycloheximide in higher plant systems. Plant Physiol. 170(46), 227–232 (1970)Google Scholar
  16. 16.
    Bernard, C.: Nouvelles expériences dans le but de montrer que l’anesthésie peut être produite chez tous les êtres vivants. C. Rend. S. Soc. Biol., 1877, 6e série, t3, p. 312. Exemplaire numérisé: BIU Santé (Paris) Adresse permanente: (1876)
  17. 17.
    Grémiaux, A., Yokawa, K., Mancuso, S., Baluška, F.: Plant anesthesia supports similarities between animals and plants: Claude Bernard's forgotten studies. Plant. Signal. Behav. 9(1), e27886 (2014). Epub 2014 Jan 29. PMID: 24476640, PMCID: PMC4091246Google Scholar
  18. 18.
    Darwin, C.R.: Effect of salt-water on the germination of seeds. Gardeners’ Chron. Agric. Gaz. 47, 773 (1855)Google Scholar
  19. 19.
    Weitbrecht, K., Müller, K., Leubner-Metzger, G.: First off the mark: early seed germination. J. Exp. Bot. 62, 3289–3309 (2011)Google Scholar
  20. 20.
    Fitter, S.S., Hunt, L.D., Fletcher, J.S.: Resistance of plant cells to cycloheximide. Proc. Okla. Acad. Sci. 55, 49–50 (1975)Google Scholar
  21. 21.
    Chakrabarti, S., Dube, D.K., Roy, S.C.: Effects of emetine and cycloheximide on mitochondrial protein synthesis in different systems. Biochem. J. 128, 461–462 (1972)Google Scholar
  22. 22.
    Alessenko, A.V., Boikov, PYa., Filippova, G.N., Khrenov, A.V., Loginov, A.S., Makarieva, E.D.: Mechanisms of cycloheximide-induced apoptosis in liver cells. FEBS Lett. 416, 113–116 (1997)Google Scholar
  23. 23.
    Susorov, D., Mikhailova, T., Ivanov, A., Sokolova, E., Alkalaeva, E.: Stabilization of eukaryotic ribosomal termination complexes by deacylated tRNA. Nucl. Acids Res. 43(6), 3332–3343 (2015). Epub 2015 Mar 9. PMID: 25753665, PMCID: PMC4381076.
  24. 24.
    Cihák, A., Cerná, J.: Stimulatory effect of cycloheximide and related glutarimide antibiotics on liver uridine kinase. FEBS Lett. 23, 271–274 (1972)Google Scholar
  25. 25.
    McMahon, D.: Cycloheximide is not a specific inhibitor of protein synthesis in vivo. Plant Physiol. 55, 815–821 (1975)Google Scholar
  26. 26.
    Arc, E., Sechet, J., Corbineau, F., Rajjou, L., Marion-Poll, A.: ABA crosstalk withethylene and nitric oxide in seed dormancy and germination. Front Plant Sci. 4, 63 (2013). eCollection 2013. PMID: 23531630, PMCID: PMC3607800.
  27. 27.
    Klose, C., Arendt, E.K.: Proteins in oats; their synthesis and changes during germination: a review. Crit. Rev. Food Sci. Nutr. 52, 629–639 (2012)Google Scholar
  28. 28.
    Lin, Z., Zhong, S., Grierson, D.: Recent advances in ethylene research. J. Exp. Bot. 60, 3311–3336 (2009)Google Scholar
  29. 29.
    Tan-Wilson, A.L., Wilson, K.A.: Mobilization of seed protein reserves. Physiol. Plant. 145, 140–153 (2012)Google Scholar
  30. 30.
    Thomas, T.L.: Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5, 1401–1410 (2012)Google Scholar
  31. 31.
    Finkelstein, R.R., Gampala, S.S., Rock, C.D.: Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl), S15–S45 (2002)Google Scholar
  32. 32.
    Kitahata, N., Asami, T.: Chemical biology of abscisic acid. J. Plant. Res. 124, 549–557 (2011)Google Scholar
  33. 33.
    Linkies, A., Leubner-Metzger, G.: Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 31, 253–270 (2012)Google Scholar
  34. 34.
    García-Martinez, J.L., Gil, J.: Light regulation of gibberellin biosynthesis and mode of action. J. Plant Growth Regul. 20, 354–368 (2001)Google Scholar
  35. 35.
    Gupta, R., Chakrabarty, S.K.: Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav. 8, e25504 (2013)Google Scholar
  36. 36.
    Hauvermale, A.L., Ariizumi, T., Steber, C.M.: Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 160, 83–92 (2012)Google Scholar
  37. 37.
    Schwechheimer, C., Willige, B.C.: Shedding light on gibberellic acid signalling. Curr. Opin. Plant Biol. 12, 57–62 (2009)Google Scholar
  38. 38.
    Bleecker, A.B., Kende, H.: Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 10, 2330–2347 (2000)Google Scholar
  39. 39.
    Jiang, W.B., Lin, W.H.: Brassinosteroid functions in Arabidopsis seed development. Plant Signal Behav. 8, e25928 (2013)Google Scholar
  40. 40.
    Kimura, M., Nambara, E.: Stored and neosynthesis mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Mol. Biol. 73, 119–129 (2010)Google Scholar
  41. 41.
    Hao, H., Li, Y., Hu, Y., Lin, J.: Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. New Phytol. 165, 721–730 (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • O. Viman
    • 1
  • K. Balla
    • 2
  • L. Holonec
    • 1
    Email author
  • M. Tămaș
    • 2
  • D. L. Dumitrașcu
    • 2
  • V. Șandor
    • 2
  • L. Nedelcu
    • 3
  1. 1.University of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania
  2. 2.“Iuliu Hațieganu” University of Medicine and PharmacyCluj-NapocaRomania
  3. 3.University “Transilvania”BrașovRomania

Personalised recommendations