Advertisement

Improve the Hole Injection to Enhance the IQE for DUV LEDs

  • Zi-Hui ZhangEmail author
  • Chunshuang Chu
  • Kangkai Tian
  • Yonghui Zhang
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The very low doping efficiency for the p-type Al-rich AlGaN layers indicates that the hole injection capability for DUV LEDs can be poor. Therefore, we ought to investigate the approaches to enable high-efficiency hole injection. In this chapter, we propose novel DUV LED architectures to make “hot” holes, increase the hole concentration in the p-type layer, and reduce the hole blocking effect that arises from the p-type electron blocking layer (p-EBL).

References

  1. 1.
    Katsuragawa M, Sota S, Komori M, Anbe C, Takeuchi T, Sakai H, Amano H, Akasaki I (1998) Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth 189:528–531.  https://doi.org/10.1016/S0022-0248(98)00345-5CrossRefGoogle Scholar
  2. 2.
    Zhang L, Ding K, Yan JC, Wang JX, Zeng YP, Wei TB, Li YY, Sun BJ, Duan RF, Li JM (2010) Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett 97(6):062103.  https://doi.org/10.1063/1.3478556CrossRefGoogle Scholar
  3. 3.
    Simon J, Protasenko V, Lian C, Xing H, Jena D (2010) Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961):60–64.  https://doi.org/10.1126/science.1183226CrossRefGoogle Scholar
  4. 4.
    Bayram C, Pau JL, McClintock R, Razeghi M (2008) Delta-doping optimization for high quality p-type GaN. J Appl Phys 104(8):083512.  https://doi.org/10.1063/1.3000564CrossRefGoogle Scholar
  5. 5.
    Bayram C, Pau JL, McClintock R, Razeghi M (2008) Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping. Appl Phys Lett 92(24):241103.  https://doi.org/10.1063/1.2948857CrossRefGoogle Scholar
  6. 6.
    Li T, Simbrunner C, Wegscheider M, Navarro-Quezada A, Quast M, Schmidegg K, Bonanni A (2008) GaN:δ-Mg grown by MOVPE: structural properties and their effect on the electronic and optical behavior. J Cryst Growth 310(1):13–21.  https://doi.org/10.1016/j.jcrysgro.2007.09.045CrossRefGoogle Scholar
  7. 7.
    Gunning B, Lowder J, Moseley M, Doolittle WA (2012) Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN. Appl Phys Lett 101(8):082106.  https://doi.org/10.1063/1.4747466CrossRefGoogle Scholar
  8. 8.
    Chen Y, Wu H, Han E, Yue G, Chen Z, Wu Z, Wang G, Jiang H (2015) High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl Phys Lett 106(16):162102.  https://doi.org/10.1063/1.4919005CrossRefGoogle Scholar
  9. 9.
    Kim JK, Waldron EL, Li Y-L, Gessmann T, Schubert EF, Jang HW, Lee J-L (2004) P-type conductivity in bulk AlxGa1−xN and AlxGa1−xN/AlyGa1−yN superlattices with average Al mole fraction > 20%. Appl Phys Lett 84(17):3310–3312.  https://doi.org/10.1063/1.1728322CrossRefGoogle Scholar
  10. 10.
    Cheng B, Choi S, Northrup JE, Yang Z, Knollenberg C, Teepe M, Wunderer T, Chua CL, Johnson NM (2013) Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl Phys Lett 102(23):231106.  https://doi.org/10.1063/1.4809947CrossRefGoogle Scholar
  11. 11.
    Kipshidze G, Kuryatkov V, Zhu K, Borisov B, Holtz M, Nikishin S, Temkin H (2003) AlN/AlGaInN superlattice light-emitting diodes at 280 nm. J Appl Phys 93(3):1363–1366.  https://doi.org/10.1063/1.1535255CrossRefGoogle Scholar
  12. 12.
    Sergey N, Vladimir VK, Anilkumar C, Boris AB, Gela DK, Iftikhor A, Mark H, Henryk T (2003) Deep ultraviolet light emitting diodes based on short period superlattices of AlN/AlGa(In)N. Jpn J Appl Phys 42(11B):L1362.  https://doi.org/10.1143/JJAP.42.L1362CrossRefGoogle Scholar
  13. 13.
    Zhang Z-H, Chen S-WH, Chu C, Tian K, Fang M, Zhang Y, Bi W, Kuo H-C (2018) Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high Mg doping efficiency. Nanoscale Res Lett 13:122.  https://doi.org/10.1186/s11671-018-2539-9CrossRefGoogle Scholar
  14. 14.
    Kuo Y-K, Chang J-Y, Chen F-M, Shih Y-H, Chang H-T (2016) Numerical Investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J Quantum Electron 52(4):1–5.  https://doi.org/10.1109/JQE.2016.2535252CrossRefGoogle Scholar
  15. 15.
    Kuo Y, Chang J, Chang H, Chen F, Shih Y, Liou B (2017) Polarization effect in AlGaN-based deep-ultraviolet light-emitting diodes. IEEE J Quantum Electron 53(1):1–6.  https://doi.org/10.1109/JQE.2016.2643289CrossRefGoogle Scholar
  16. 16.
    Zhang Z-H, Liu W, Tan ST, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun XW, Demir HV (2014) A hole accelerator for InGaN/GaN light-emitting diodes. Appl Phys Lett 105(15):153503.  https://doi.org/10.1063/1.4898588CrossRefGoogle Scholar
  17. 17.
    Zhang Z-H, Zhang Y, Bi W, Geng C, Xu S, Demir HV, Sun XW (2016) On the hole accelerator for III-nitride light-emitting diodes. Appl Phys Lett 108(15):071101.  https://doi.org/10.1063/1.4947025CrossRefGoogle Scholar
  18. 18.
    Zhang Z-H, Li L, Zhang Y, Xu F, Shi Q, Shen B, Bi W (2017) On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt Express 25(14):16550–16559.  https://doi.org/10.1364/OE.25.016550CrossRefGoogle Scholar
  19. 19.
    Zhang Z-H, Liu W, Ju Z, Tan ST, Ji Y, Zhang X, Wang L, Kyaw Z, Sun XW, Demir HV (2014) Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency. Appl Phys Lett 104(25):251108.  https://doi.org/10.1063/1.4885421CrossRefGoogle Scholar
  20. 20.
    Zhang Z-H, Chu C, Chiu CH, Lu TC, Li L, Zhang Y, Tian K, Fang M, Sun Q, Kuo H-C, Bi W (2017) UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections. Opt Lett 42(21):4533–4536.  https://doi.org/10.1364/OL.42.004533CrossRefGoogle Scholar
  21. 21.
    Kolbe T, Stellmach J, Mehnke F, Rothe MA, Kueller V, Knauer A, Einfeldt S, Wernicke T, Weyers M, Kneissl M (2016) Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes. Phys Status Solidi a-Appl Mater Sci 213(1):210–214.  https://doi.org/10.1002/pssa.201532479CrossRefGoogle Scholar
  22. 22.
    Mehnke F, Kuhn C, Guttmann M, Reich C, Kolbe T, Kueller V, Knauer A, Lapeyrade M, Einfeldt S, Rass J, Wernicke T, Weyers M, Kneissl M (2014) Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett 105(5):051113.  https://doi.org/10.1063/1.4892883CrossRefGoogle Scholar
  23. 23.
    Zhang Z-H, Chen S-WH, Zhang Y, Li L, Wang S-W, Tian K, Chu C, Fang M, Kuo H-C, Bi W (2017) Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. Acs Photonics 4(7):1846–1850.  https://doi.org/10.1021/acsphotonics.7b00443CrossRefGoogle Scholar
  24. 24.
    Chu CS, Tian KK, Fang MQ, Zhang YH, Li LP, Bi WG, Zhang ZH (2018) On the AlxGa1−xN/AlyGa1−yN/AlxGa1−xN (x > y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes. Superlattices Microstruct 113:472–477.  https://doi.org/10.1016/j.spmi.2017.11.029CrossRefGoogle Scholar
  25. 25.
    Chu C, TianK, FangM, ZhangY, Zhao S, Bi W, Zhang Z-H (2018) Structural design and optimization of deep-ultraviolet light-emitting diodes with AlxGa1−xN/AlyGa1−yN/AlxGa1−xN (x > y) p-electron blocking layer. J Nanophotonics 12(4):043503, May 2018.  https://doi.org/10.1117/1.jnp.12.043503CrossRefGoogle Scholar
  26. 26.
    Zhang Z-H, Zhang Y, Bi W, Demir HV, Sun XW (2016) On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Phys Status Solidi (a) 213(12):3078–3102.  https://doi.org/10.1002/pssa.201600281CrossRefGoogle Scholar
  27. 27.
    Zhang M, Li Y, Chen S, Tian W, Xu J, Li X, Wu Z, Fang Y, Dai J, Chen C (2014) Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells. Superlattices Microstruct 75:63–71.  https://doi.org/10.1016/j.spmi.2014.07.002CrossRefGoogle Scholar
  28. 28.
    Tsai M-C, Yen S-H, Kuo Y-K (2011) Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl Phys Lett 98(11):111114.  https://doi.org/10.1063/1.3567786CrossRefGoogle Scholar
  29. 29.
    Yang GF, Xie F, Dong KX, Chen P, Xue JJ, Zhi T, Tao T, Liu B, Xie ZL, Xiu XQ, Han P, Shi Y, Zhang R, Zheng YD (2014) Design of deep ultraviolet light-emitting diodes with staggered AlGaN quantum wells. Physica E 62:55–58.  https://doi.org/10.1016/j.physe.2014.04.014CrossRefGoogle Scholar
  30. 30.
    Yin YA, Wang N, Fan G, Zhang Y (2014) Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers. Superlattices Microstruct 76:149–155.  https://doi.org/10.1016/j.spmi.2014.10.003CrossRefGoogle Scholar
  31. 31.
    Tian K, Chen Q, Chu C, Fang M, Li L, Zhang Y, Bi W, Chen C, Zhang Z-H, Dai J (2018) Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations. Physica Status Solidi-Rapid Res Lett 12(1):1700346.  https://doi.org/10.1002/pssr.201700346CrossRefGoogle Scholar
  32. 32.
    Kim SJ, Kim TG (2014) Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths. Physica Status Solidi (a) 211(3):656–660.  https://doi.org/10.1002/pssa.201330258CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zi-Hui Zhang
    • 1
    Email author
  • Chunshuang Chu
    • 1
  • Kangkai Tian
    • 1
  • Yonghui Zhang
    • 1
  1. 1.School of Electronics and Information Engineering, Institute of Micro-Nano Photoelectron and Electromagnetic Technology InnovationHebei University of TechnologyTianjinChina

Personalised recommendations