Advertisement

A Detailed Survey of Rectenna for Energy Harvesting: Over a Wide Range of Frequency

  • Rachit DanaEmail author
  • Parthit Sardhara
  • Akshay Sanghani
  • Prarthan Mehta
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

This Survey Paper aims at providing a comprehensive analysis of various Energy Harvesting techniques based on Rectennas. Several Research Papers published over the years have been studied in detail. The Rectennas mentioned in these papers are classified according to the frequency/frequency range and are thereupon compared with reference to conversion efficiency, output voltage, impedance matching techniques, and antenna type. Based on the survey performed, a conclusion has been drawn.

Keywords

Wireless power transfer Rectenna Impedance matching Conversion efficiency 

References

  1. 1.
    Athira AT, Shoukath S, Mohammad SK (2017) Design of a compact voltage-doubler-type rectenna. In: IOSR journal of electronics and communication engineering (IOSR-JECE), the national symposium on antenna signal processing & interdisciplinary research in electronics 2017 (ASPIRE-2017)Google Scholar
  2. 2.
    Zhang J, Huang Y (1980) Rectennas for wireless energy harvesting. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJGoogle Scholar
  3. 3.
    Olgun U, Chen CC, Volakis J (2011) Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel Propag Lett 10.  https://doi.org/10.1109/lawp.2011.2136371CrossRefGoogle Scholar
  4. 4.
    Phongcharoenpanich C, Boonying K (2015) A 2.4-GHz dual polarized suspended square plate rectenna with inserted annular rectangular ring slot. Int J RF Microw Comput Aided Eng, Received 28 June 2015.  https://doi.org/10.1102/mmce.20949
  5. 5.
    Ramos I, Popović Z (2015) A compact 2.45 GHz, low power wireless energy harvester with a reflector-backed folded dipole rectenna. In: IEEE wireless power transfer conference (WPTC).  https://doi.org/10.1109/wpt.2015.7140159
  6. 6.
    Takhedmit H, Cirio L, Costa F, Picon O (2014) Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz. In: The 8th European conference on antennas and propagation (EuCAP), IEEE.  https://doi.org/10.1109/eucap.2014.6902451
  7. 7.
    Chuc DH, Duong BG (2014) Design, simulation and fabrication of rectenna circuit at S-band for microwave power transmission. VNU J Sci Math Phys 30(3):24–30Google Scholar
  8. 8.
    Vera GA, Georgiadis A, Collado A, Via S (2010) Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging. In: Radio and wireless symposium (RWS), IEEE.  https://doi.org/10.1109/rws.2010.5434266
  9. 9.
    Mitani T, Kawashima S, Nishimura T (2017) Analysis of voltage doubler behavior of 2.45-GHz voltage doubler-type rectenna. IEEE Trans Microw Theory Tech 65(4).  https://doi.org/10.1109/tmtt.2017.2668413CrossRefGoogle Scholar
  10. 10.
    Sun H, Geyi W (2015) A new rectenna with all polarization receiving capability for wireless power transmission. IEEE Antennas Wirel Propag Lett.  https://doi.org/10.1109/lawp.2015.2476345CrossRefGoogle Scholar
  11. 11.
    Huang Y, Shinohara N, Toromura H (2016) A wideband rectenna for 2.4 GHz-band RF energy harvesting. In: IEEE wireless power transfer conference (WPTC).  https://doi.org/10.1109/wpt.2016.7498816
  12. 12.
    Ji S, Qi H, Zhang H (2014) Rectenna serves 2.45-GHz wireless power transmission. In: SCRIBD microwave and RFGoogle Scholar
  13. 13.
    Hong TU, Oh KM, Lee HW, Nam H, Yun TS, Lee DS, Hwang HI, Lee JC (2010) Novel broadband rectenna using printed monopole antenna and harmonic-suppressed stub filter. Microw Opt Technol Lett 52(5). Wiley Periodicals, Inc.  https://doi.org/10.1102/mop.25130
  14. 14.
    Nie MJ, Yang XX, Tan GN, Han B (2013) A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide. IEEE Antennas Wirel Propag Lett.  https://doi.org/10.1109/lawp.2015.2388789CrossRefGoogle Scholar
  15. 15.
    Sun H (2015) An enhanced rectenna using differentially-fed rectifier for wireless power transmission. IEEE Antennas Wirel Propag Lett.  https://doi.org/10.1109/lawp.2015.2427197
  16. 16.
    Harouni Z, Osman L, Gharsallah A (2010) Efficient 2.45 GHz rectenna design with high harmonic rejection for wireless power transmission. IJCSI Int J Comput Sci Issues 7(5). ISSN (Online): 1694–0814Google Scholar
  17. 17.
    Cao Y, Hong W, Deng L, Li S, Yin L (2016) A 2.4 GHz circular polarization rectenna with harmonic suppression for microwave power transmission. In: Internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), IEEE international conference (2016).  https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2016.85
  18. 18.
    Park JY, Han SM, Itoh T (2004) A rectenna design with harmonic-rejecting circular-sector antenna. IEEE Antennas Wirel Propag Lett 3.  https://doi.org/10.1109/lawp.2004.827889CrossRefGoogle Scholar
  19. 19.
    Ojha SS, Singhal PK, Agarwal A, Gupta AK (2013) 2-GHz dual diode dipole rectenna for wireless power transmission. Int J Microw Opt Technol 8(2)Google Scholar
  20. 20.
    Pinuela M, Yates DC, Lucyszyn S, Mitcheson PD (2012) Current state of research at Imperial College London in RF harvesting and inductive power transfer. In: 2nd international workshop on wireless energy transport and harvestingGoogle Scholar
  21. 21.
    Piñuela M, Mitcheson P, Lucyszyn S (2013) Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech 61(7).  https://doi.org/10.1109/tmtt.2013.2262687CrossRefGoogle Scholar
  22. 22.
    Song S, Su M, Liu Y, Li S, Tang B (2016) A novel broadband rectenna for energy harvesting. In: International symposium on antennas and propagation (ISAP), IEEE. ISBN: 978-88552-131-7Google Scholar
  23. 23.
    Nimo A, Beckedahl T, Ostertag T, Reindl L (2015) Analysis of passive RF-DC power rectification and harvesting wireless RF energy for micro-watt sensors. AIMS Energy 3(2).  https://doi.org/10.3934/energy.2015.2.184CrossRefGoogle Scholar
  24. 24.
    Ghosh S (2017) Design and testing of rectifying antenna for RF energy scavenging in GSM 900 band. Int J Comput ApplGoogle Scholar
  25. 25.
    Liu Y, Huang K, Luo X (2017) Circularly polarized antenna array fed by air-bridge free CPW-slotline network. Int J Antennas Propag 2017, Article ID 5230142, Hindawi.  https://doi.org/10.1155/2017/5230142Google Scholar
  26. 26.
    Khemar A, Kacha A, Takhedmit H, Abib G (2017) Design and experiments of a 3G-band rectenna for radio frequency energy harvesting, vol 62, no 1, pp 82–86. Bucarest. researchgate.net/publication/315757027 (2017)Google Scholar
  27. 27.
    Palazzi V, Prete MD, Fantuzzi M (2017) Scavenging for energy. IEEE microwave magazine.  https://doi.org/10.1109/mmm.2016.2616189CrossRefGoogle Scholar
  28. 28.
    Zhang F, Liu X, Meng FY, Wu Q, Lee JC, Xu JF, Wang C, Kim NY (2014) Design of a compact planar rectenna for wireless power transfer in the ISM band. Hindawi Publishing Corporation International Journal of Antennas and Propagation, Article ID 298727.  https://doi.org/10.1155/2014/298127Google Scholar
  29. 29.
    Xuexia Y, Junshu X, Deming X, Changlong X (2008) X-band circularly polarized rectennas for microwave power transmission applications. China J Electron 25(3).  https://doi.org/10.1107/s11767-006-0273-4
  30. 30.
    Arrawatia M, Baghini MS, Kumar G (2016) Broadband rectenna array for RF energy harvesting. In: International symposium on antennas and propagation (APSURSI) conference publications, IEEE conference.  https://doi.org/10.1109/asp.2016.7696641
  31. 31.
    Suh YH, Chang K (2002) A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans Microw Theory Tech 50(7).  https://doi.org/10.1109/tmtt.2002.800430CrossRefGoogle Scholar
  32. 32.
    Tu WH, Hsu SH, Chang K (2007) Compact 5.8-GHz rectenna using stepped-impedance dipole antenna. IEEE Antennas Wirel Propag Lett 6.  https://doi.org/10.1109/lawp.2007.898555CrossRefGoogle Scholar
  33. 33.
    Sun H, Geyi W (2016) A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications. IEEE Antennas Wirel Propag Lett.  https://doi.org/10.1109/lawp.2016.2642124CrossRefGoogle Scholar
  34. 34.
    Visser HJ, Keyrouz S, Smolders AB (2015) Optimized rectenna design. In: Wireless power transmission for sustainable electronics (WiPE), vol 2, no 1. Cambridge University Press.  https://doi.org/10.1017/wpt.2014.14CrossRefGoogle Scholar
  35. 35.
    Keyrouz S, Visser H (2013) Efficient direct-matching rectenna design for RF power transfer applications. In: PowerMEMS 2013 journal of physics: conference series 476.  https://doi.org/10.1088/1742-6596/476/1/012093Google Scholar
  36. 36.
    Mustafa F, Parimon N, Hashim AM, Rahman SFA, Rahman ARA, Osman MN (2010) RF–DC power conversion of Schottky diode fabricated on AlGaAs/GaAs heterostructure for on-chip rectenna device application in nanosystems. Microsyst Technol. Springer.  https://doi.org/10.1007/s00542-010-1099-4CrossRefGoogle Scholar
  37. 37.
    Citroni R, Leggieri A, Passi D, Paolo FD, Carlo AD (2017) Nano energy harvesting with plasmonic nano-antennas: a review of MID-IR rectenna and application. Adv Electromagn 6(2).  https://doi.org/10.7716/aem.v6i2.462CrossRefGoogle Scholar
  38. 38.
    Devi KKA, Din NM, Chakrabarty CK (2012) Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting. Sci Res Circuits Syst.  https://doi.org/10.4236/cs.2012.33030CrossRefGoogle Scholar
  39. 39.
    Yuvaraju P, Premkumar S (2016) Enhancement of the voltage doubler stages in a RF-DC: converter module for energy harvesting. J Chem Pharm Sci. ISSN:0974-2115, JCHPS Special Issue 6 (2016)Google Scholar
  40. 40.
    Nimo A, Grgić D, Reindl L (212) Optimization of passive low power wireless electromagnetic energy harvesters. Sensors, 12. ISSN 1424-8220.  https://doi.org/10.3390/s121013636CrossRefGoogle Scholar
  41. 41.
    Ahmad ME. Energy harvesting using a cheap easy-to-fabricate FM rectenna. Online J Electronics and Electrical Eng (OJEEE) 1(1), Reference Number: W09-0005Google Scholar
  42. 42.
    Ungan T, Polozec XL, Walker W, Reindl L (2009) RF energy harvesting design using high Q resonators. In: Croatia, IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFIO (IMWS 2009).  https://doi.org/10.1109/imws2.2009.5307869
  43. 43.
    Toyoda I, Nishiyama E (2017) Rectenna design using electromagnetic field simulation including nonlinear devices. In: IEEE international conference on computational electromagnetics (ICCEM).  https://doi.org/10.1109/compem.2017.7912771
  44. 44.
    Garbo CD, Livreri P, Vitale G (2017) Optimal matching between optical rectennas and harvester circuits. In: Environment and electrical engineering and 2017 IEEE industrial and commercial power system Europe (EEEIC/I&CPS Europe) IEEE international conference.  https://doi.org/10.1109/eeeic.2017.7977686

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rachit Dana
    • 1
    Email author
  • Parthit Sardhara
    • 1
  • Akshay Sanghani
    • 1
  • Prarthan Mehta
    • 1
  1. 1.Dharmsinh Desai UniversityNadiadIndia

Personalised recommendations