Advertisement

Supercontinuum Generation at 3100 nm in Dispersion-Engineered As38.8Se61.2-Based Chalcogenide Photonic Crystal Fibers

  • Shruti KalraEmail author
  • Sandeep Vyas
  • Edris Faizabadi
  • Manish Tiwari
  • Ghanshyam Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

The presented paper numerically investigates the mid-infrared supercontinuum generation of 3800 nm broad spectra spanning from 2000 to 5800 nm with nonlinear As38.8Se61.2 chalcogenide solid core photonic crystal fiber. The photonic crystal fiber is tailored to generate dispersion in anomalous region, resulting in zero-dispersion wavelengths. Pumping the engineered fiber with 1 kW power at 3100 nm near lower zero-dispersion wavelength a broad spectrum is observed.

Keywords

Photonic crystal fiber (PCF) Chromatic dispersion Effective mode area (AeffNonlinear coefficient Supercontinuum generation (SCG) 

References

  1. 1.
    Barh A, Ghosh S, Agrawal GP, Varshney RK, Aggarwal ID, Pal BP (2013) Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study. J Opt 15:035205CrossRefGoogle Scholar
  2. 2.
    Barh A, Ghosh S, Varshney RK, Pal BP (2013) An efficient broadband mid-wave IR fiber optic light source: design and performance simulation. Opt Express 21:9547–9555CrossRefGoogle Scholar
  3. 3.
    Estevez M-C, Alvarez M, Lechuga LM (2012) Integrated optical devices for lab-on-a-chip biosensing application. Laser Photonics Rev 6(4):463–487CrossRefGoogle Scholar
  4. 4.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Chin Opt Lett 14:123201CrossRefGoogle Scholar
  5. 5.
    Russell PSJ (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749CrossRefGoogle Scholar
  6. 6.
    Saitoh K, Koshiba M, Mortensen NA (2006) Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible. New J Phys 8:207–215CrossRefGoogle Scholar
  7. 7.
    Vyas S, Tiwari M, Tanabe T, Singh G (2016) Chalcogenide (LiGSe2, LiGISe, LiGaS2): a perfect material to design highly nonlinear PCFs for supercontinuum generation. In: Proceedings of the international conference on recent cognizance in wireless communication & image processing. Springer, India, pp 409–413.  https://doi.org/10.1007/978-81-322-2638-2638-3
  8. 8.
    Tamura KR, Kubota H, Nakazawa M (2000) Fundamentals of stable continuum generation at high repetition rates. IEEE J Quantum Electron 36:773–779CrossRefGoogle Scholar
  9. 9.
    Hult J, Watt RS, Kaminski CF (2007) High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt Express 15:11385–11395CrossRefGoogle Scholar
  10. 10.
    Kaminski CF, Watt RS, Elder AD, Frank JH, Hult J (2008) Supercontinuum radiation for applications in chemical sensing and microscopy. Appl Phys B 92:367–378CrossRefGoogle Scholar
  11. 11.
    Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 26:608–610CrossRefGoogle Scholar
  12. 12.
    Shi K, Li P, Liu Z (2007) Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap. Appl Phys Lett 90:141116CrossRefGoogle Scholar
  13. 13.
    Morioka T, Kawanishi S, Mori K, Saruwatari M (1994) Transformlimited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum. Electron Lett 30:1166–1168CrossRefGoogle Scholar
  14. 14.
    Reichert J, Udem T, Hänsch TW, Knight JC, Wadsworth WJ, Russell PSJ (2000) Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett 85:2264–2267Google Scholar
  15. 15.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Ultraflat broadband supercontinuum in highly nonlinear Ge11.5As24Se64.5 photonic crystal fibres. Ukr J Phys Opt 17:132–139CrossRefGoogle Scholar
  16. 16.
    Vyas S, Tanabe T, Singh G, Tiwari M (2016) Broadband supercontinuum generation and Raman response in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference on computational techniques in information and communication technologies (ICCTICT), pp 607–611.  https://doi.org/10.1109/ICCTICT.2016.7514651
  17. 17.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Mid-infrared supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference advances in computing, communications and informatics (ICACCI), pp 2547–2552.  https://doi.org/10.1109/icacci.2016.7732436
  18. 18.
    Oh M-S, Seo I (2015) Preparation and characterization of As40Se60 and As38.8Se61.2 glasses with high quality for single mode IR glass fiber. Opt Fiber Technol 21:176–179Google Scholar
  19. 19.
    Diouf M, Salem AB, Cherif R, Saghaei H, Wague A (2017) Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt 56(2):163–169CrossRefGoogle Scholar
  20. 20.
    Agarwal GP (2007) Nonlinear fiber optics, 4th edn. AcademicGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shruti Kalra
    • 1
    Email author
  • Sandeep Vyas
    • 1
  • Edris Faizabadi
    • 2
  • Manish Tiwari
    • 3
  • Ghanshyam Singh
    • 4
  1. 1.Department of ECEJaipur Engineering College & Research CentreJaipurIndia
  2. 2.School of PhysicsIran University of Science & TechnologyTehranIran
  3. 3.Department of ECEManipal UniversityJaipurIndia
  4. 4.Department of ECEMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations