Advertisement

A Comparative Study of Various All-Optical Logic Gates

  • Ankur SahariaEmail author
  • Nitesh Mudgal
  • Ankit Agarwal
  • Sourabh Sahu
  • Sanjeev Jain
  • Ashish Kumar Ghunawat
  • Ghanshyam Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

This article reviews the design of various optical logic gates. As we know, speed in electrical circuits is a matter of concern in high-speed communication. To avoid such limitations photonic components can be used instead of electrical components. The switching characteristic of optical communication is used to construct logical device using electro-optic effect in a Mach–Zehnder interferometer (MZI). The interferometer has shown great way to transport signal from one port to other. Hence, it is now possible to design various logical structures in digital devices using the electro-optic (EO) and interferometer as a basic constructing unit. This paper reviews various methods to design logic gate or logic operations. The design of gate has been demonstrated using finite-difference time-domain approach.

Keywords

MZI FDTD Coupler LiNbO modulator XPM XGM FWM 

References

  1. 1.
    Kumar S, Raghuwanshi SK, Kumar A (2013) Implementation of optical switches by using Mach–Zehnder interferometer. Opt Eng 52(9):097106Google Scholar
  2. 2.
    Senior JM (2009) Optical fiber communications principles and practice, 3rd ednGoogle Scholar
  3. 3.
    Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of XOR/XNOR and AND logic gates by using Mach–Zehnder interferometers. Optik 125:5764–5767CrossRefGoogle Scholar
  4. 4.
    Kumar S, Raghuwanshi SK, Rahman A (2015) Implementation of high speed optical universal logic gates using the electro-optic effect-based Mach–Zehnder interferometer structures. J Mod Opt 62(12):978–988.  https://doi.org/10.1080/09500340.2015.1015636CrossRefGoogle Scholar
  5. 5.
    Kumar S, Singh G, Bisht A, Sharma S, Amphawan A (2015) Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach–Zehnder interferometers. Appl Opt 54(28)CrossRefGoogle Scholar
  6. 6.
    Sahu PP (2015) Optical pulse controlled two mode interference coupler based logic gates. Optik 126:404–407CrossRefGoogle Scholar
  7. 7.
    Singh P, Tripathi DK, Jaiswal S, Dixit HK (2014) Review article all-optical logic gates: designs, classification, and comparison. Hindawi Publishing Corporation Advances in Optical Technologies (2014), vol 2014, Article id 275083Google Scholar
  8. 8.
    Kumar S, Kumar A, Raghuwanshi SK (2014) Implementation of an optical AND gate using Mach-Zehnder interferometers. In: Proceedings of SPIE optical modelling and design III vol 9131, 913120Google Scholar
  9. 9.
    Raghuwanshi SK, Kumar S, Chen N-K (2014) Implementation of sequential logic circuits using the Mach–Zehnder interferometer structure based on electro-optic effect. Opt Commun 333:193–208Google Scholar
  10. 10.
    Pashamehr A, Zavvari M, Banaei HA (2016) All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators. Front Optoelectron 9(4):578–584CrossRefGoogle Scholar
  11. 11.
    Chauhan C, Bedi A, Kumar S (2017) Ultrafast optical reversible double Feynman logic gate using electro-optic effect in lithium-niobate based Mach-Zehnder interferometers. In: SPIE proceedings, vol 10105, Oxide-based materials and devices VIII; 1010520.  https://doi.org/10.1117/12.2250794
  12. 12.
    Parandin F, Karkhanehchi MM (2017) Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct 101:253–260CrossRefGoogle Scholar
  13. 13.
    Dimitriadou E, Zoiros KE (2012) On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 44:600–607CrossRefGoogle Scholar
  14. 14.
    Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45:1213–1221CrossRefGoogle Scholar
  15. 15.
    Dimitriadou E, Zoiros KE (2013) Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 45:79–88CrossRefGoogle Scholar
  16. 16.
    Dimitriadou E, Zoiros KE (2012) On the feasibility of ultrafast all optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt Laser Technol 44:1971–1981CrossRefGoogle Scholar
  17. 17.
    Godbole A, Dali PP, Janyani V, Singh G, Tanabe T (216) All optical scalable logic gates using Si3N4 microring resonators. IEEE J Sel Top Quantum Electron 22Google Scholar
  18. 18.
    Kumar S, Chanderkanta, Raghuwansh SK (2016) Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach–Zehnder interferometers. Appl Opt 55:21/5693CrossRefGoogle Scholar
  19. 19.
    Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M (2011) Design of optical XOR, XNOR, NAND and OR logic gates based on multi-mode interference waveguides for binary—phase shift keyed signal. J Lightwave Technol 29:2836–2845CrossRefGoogle Scholar
  20. 20.
    Ghadi A, Mirzanejhad S (2011) All optical logic gates using semiconductor based three coupled waveguides nonlinear directional coupler. Opt Commun 284:432–435CrossRefGoogle Scholar
  21. 21.
    Kumar S, Raghuwanshi SK, Kumar A (2013) Implementation of optical switches by using Mach-Zehnder interferometer. Opt Eng 52:097106CrossRefGoogle Scholar
  22. 22.
    Kumar S, Raghuwanshi SK, Kumar A (2013) 1 × 8 signal router using cascading the Mach-Zehnder interferometers. In: Prooceeding of 6th IEEE/International Conference on Advanced Info comm Technology (IEEE/ICAIT, 2013), pp 161–162Google Scholar
  23. 23.
    Raghuwanshi SK, Kumar A, Kumar S (2013) 1 × 4 signal router using 3-Mach-Zehnder interferometers. Opt Eng 52:035002CrossRefGoogle Scholar
  24. 24.
    Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of full-adder and full-subtractor based on electro-optic effect in Mach-Zehnder interferometer. Opt Commun 324:93–107CrossRefGoogle Scholar
  25. 25.
    Kumar A, Raghuwanshi SK (2016) Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach–Zehnder interferometer. Opt Quantum Electron.  https://doi.org/10.1007/s11082-014-0087-9CrossRefGoogle Scholar
  26. 26.
    Kumar S, Singh G, Bisht A (2015) 4 × 4 signal router based on electro-optic effect of Mach-Zehnder interferometer for wavelength division multiplexing applications. Opt Commun 353:17–26CrossRefGoogle Scholar
  27. 27.
    Raghuwanshi SK, Kumar A, Chen NK (2014) Implementation of sequential logic circuits using the Mach–Zehnder interferometer structure based on electro-optic effect. Opt Commun 333:193–208CrossRefGoogle Scholar
  28. 28.
    Tang X, Fang Z, Zhai Y et al (2017) A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photon J 9(2):1943-0655CrossRefGoogle Scholar
  29. 29.
    Rendón-Salgado I, Gutiérrez-Castrejón R (2017) 160 GB/s all-optical AND gate using bulk SOA turbo–switched Mach Zehnder interferometer. Opt Commun 399:77–86CrossRefGoogle Scholar
  30. 30.
    Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45:1213–1221CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ankur Saharia
    • 1
    Email author
  • Nitesh Mudgal
    • 1
  • Ankit Agarwal
    • 1
  • Sourabh Sahu
    • 1
  • Sanjeev Jain
    • 2
  • Ashish Kumar Ghunawat
    • 1
  • Ghanshyam Singh
    • 1
  1. 1.Department of Electronics and Communication EngineeringMalaviya National Institute of Technology JaipurJaipurIndia
  2. 2.Department of Electronics and Communication EngineeringGovernment Engineering CollegeBikanerIndia

Personalised recommendations