Advertisement

Low Confinement Loss Solid Core Rectangular Photonic Crystal Fiber

  • Shahli TabassumEmail author
  • Shahiruddin
  • Dharmendra K. Sing
  • M. A. Hassan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

The proposed design achieves single polarization in fundamental mode using the rectangular photonic crystal fiber, having inner ring filled with 60% glucose solution in water. The proposed structure is composed of silica material having finite number of air holes in cladding. The proposed structure has very low confinement loss between the wavelength ranging from 1 to 1.8 μm and flat zero dispersion can be achieved within the wavelength ranging from 1.4 to 2 μm. This rectangular photonic crystal fiber operating in single mode can be used where a wide operating bandwidth is required. Chromatic dispersion, confinement loss, and normalize frequency have been calculated for three different air fill fractions.

Keywords

Photonic crystal fiber Dispersion Confinement loss Air fill fraction Normalized frequency 

References

  1. 1.
    Poli F, Selleri S (2007) Photonic crystal fibers, properties and applications. Springer Series, The NetherlandsGoogle Scholar
  2. 2.
    Razzak SMA et al (2007) Guiding properties of a decagonal photonic crystal fiber. J Microw Optoelectron 6:44–47Google Scholar
  3. 3.
    Liang et al (2015) Characteristics analysis of hybrid photonic crystal fiber with hexagonal structure. Optik 126(20):2335–2337CrossRefGoogle Scholar
  4. 4.
    Olyaee Saeed et al (2011) Design of new square-lattice photonic crystal fibers for optical communication applications. Int J Phys Sci 6(18):4405–4411Google Scholar
  5. 5.
    Agarwal A et al (2008) Golden spiral photonic crystal fiber: polarization and dispersion properties 33(22):2716–2718Google Scholar
  6. 6.
    Islam MA et al (2012) Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence 30(22):3545–3551Google Scholar
  7. 7.
    Hossain MN et al (2010) A highly nonlinear spiral photonic crystal fiber for tailoring two zero dispersion wavelengths in the visible region. Photonics Lett Poland 2(3):143–145Google Scholar
  8. 8.
    Kubota Hirokazu et al (2009) Simple analysis of water filled hollow core silica photonic bandgap fiber. IEICE Electron Express 6(12):870–875CrossRefGoogle Scholar
  9. 9.
    Shadiul Islam Md et al (2017) Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int J Mod Sci 3(1):29–38CrossRefGoogle Scholar
  10. 10.
    Birks TA et al (1999) Dispersion compensation using single-material fibers. IEEE Photon Technol Lett 11:674CrossRefGoogle Scholar
  11. 11.
    Sharma C et al (2015) V parameter of photonic crystal fiber 3(5)Google Scholar
  12. 12.
    Mortensen NA et al (2003) Model cut off and the V‐parameter in photonic crystal fiber. Opt Lett 28:1879Google Scholar
  13. 13.
    Mortensen et al (2003) Low-loss criterion and effective area considerations for photonic crystal fibers. J Opt A Pure Appl Opt 5:163CrossRefGoogle Scholar
  14. 14.
    Nielsen MD et al (2003) Reduced micro deformation attenuation in large-mode-area photonic crystal fibers for visible applications. Opt Lett 28:1645CrossRefGoogle Scholar
  15. 15.
    Espindola RP et al (1999) External refractive index insensitive air-clad long period fiber grating. Electron Lett 35(4):327–328CrossRefGoogle Scholar
  16. 16.
    Rifat AA et al (2017) Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J Nano photonics 12(1)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shahli Tabassum
    • 1
    Email author
  • Shahiruddin
    • 1
  • Dharmendra K. Sing
    • 2
  • M. A. Hassan
    • 1
  1. 1.Birla Institute of TechnologyPatnaIndia
  2. 2.National Institute of Technology, PatnaPatnaIndia

Personalised recommendations