Advertisement

Parabolic Pulse Generation at 1550 nm Raman Amplifier Utilizing High Power Pump Laser

  • Dipika D. PradhanEmail author
  • Abhilash Mandloi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

To increase the range of 1550 nm signal transmission, Raman amplifier can be used. We demonstrate the design and performance of 1550 nm Raman amplifier utilizing single pump laser 1450 nm. The both codirectional and counter-directional pumping Raman amplifier is compared. The maximum gain for counter pumping is 45.87 dB and minimum noise figure is 7 dB. The 1550 nm Raman amplifier gain is function of wavelength corresponds to 8–25 nm amplification bandwidth. The saturation input power of Raman amplifier is from 10 to 15 dBm as the pump wavelength increases from 200 to 800 mW in case of counter propagation pumping configuration. Parabolic pulse generation in standard single mode fiber is investigated for the fiber length 10–100 km.

Keywords

Raman scattering Distributed amplifier Dispersion compensated fiber Dense wavelength division multiplexing Coupler 

References

  1. 1.
    Czyzak P, Mazurek P, Turkiewicz JP (2014) 1310 nm Raman amplifier utilizing high power, quantum dot pumping lasers. Opt Laser Technol 64:195–203CrossRefGoogle Scholar
  2. 2.
    Pradhan D, Mandloi A (2017) Performance analysis of backward multipumped Raman amplifier in DWDM system. Procedia Comput Sci 115:182–187CrossRefGoogle Scholar
  3. 3.
    Abu Bakar MH, Mahamad Adikan FR, Ibrahim NH (2013) L band R-EDFA/Raman hybrid amplifier with enhanced higher order pumping scheme utilizing stimulated stimulated Raman scattering. Opt Commun 291:155–161(2013)Google Scholar
  4. 4.
    Sivanantha Raja A, Vigneshwari S, Selvendran S (2016) Novel high gain and wide band hybrid amplifier designed with a combination of an EYDFA and a discrete Raman amplifier. J opt Technol 83(4):69–79CrossRefGoogle Scholar
  5. 5.
    Lee HH, Lee D, Chung HS (2004) Again clamped semiconductor optical amplifier combined with a distributed Raman fiber amplifier a good candidate as an inline amplifier for WDM networks. Opt Commun 229:249–252CrossRefGoogle Scholar
  6. 6.
    Pradhan D, Mandloi A (2016) Design optimization of data rate 16 × 40 Gbps EDFA in DWDM system. In: International conference on fiber optics and photonics, p 64, Tu4AGoogle Scholar
  7. 7.
    Abu Bakar MH, Mahamd Adikan FR, Ibrahim NH (2013) L band R-EDFA/Raman hybrid amplifier with enhanced higher order pumping scheme utilizing stimulated Raman scattering. Opt Commun 291:155–161CrossRefGoogle Scholar
  8. 8.
    Beninca MO, Pontes MJ, Segatto ME (2011) Design of a wideband Hybrid EDFA with a fiber Raman amplifier. IEEE, pp 282–285. 978-1-4577-1664-5Google Scholar
  9. 9.
    Kidorf H, Rottwitt K, Nissov M, Ma M (1999) Pump interactions in a 100 nm bandwidth Raman amplifier. IEEE Photonics Technol Lett 11(5):532–535CrossRefGoogle Scholar
  10. 10.
    Morten N, Davidson CR, Rottwitt K, Menges R, Corbett PC (1997) 100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification. ECOC 97:448Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Sardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations