Advertisement

Predictive Control of Four-Leg Converters for Photovoltaic Energy Systems

  • Venkata YaramasuEmail author
  • Marco Rivera
  • Apparao Dekka
  • Jose Rodriguez
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Photovoltaic energy systems are one of the most widely adopted distributed generation facilities. This book chapter presents predictive based current and voltage control strategies for four-leg converters employed in grid-connected and standalone photovoltaic energy systems, respectively. The proposed approach employs the novel stationary frame sampled-data models of the four-leg converters with inductive (L) and inductive-capacitive (LC) filters on the output side to predict the control variables such as output currents and load voltages. These predictions are performed using all the possible switching states of four-leg converters. The objective of minimizing the error between reference and predicted variables (load currents or voltages) is fulfilled through a cost function in the predictive control schemes. In addition, the voltage balancing of DC-bus capacitors is considered with the four-leg neutral-point clamped converters. The optimal switching states corresponding to the minimal cost function value are chosen and directly applied to the converter. The predictive control strategies fulfil the control requirements such as load current/voltage control, DC-bus voltage balancing, and neutral-leg switching frequency minimization. The simulation and experimental studies conducted using unbalanced and nonlinear loads to validate the proposed predictive control strategies.

References

  1. 1.
    International Energy Agency. Snapshot of global photovoltaic markets. Technical report, 2018. Rep. IEA PVPS T1-33:2018Google Scholar
  2. 2.
    Kouro S, Leon JI, Vinnikov D, Franquelo LG (2015) Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind Electron Mag 9(1):47–61CrossRefGoogle Scholar
  3. 3.
    Jain C, Singh B (2017) Solar energy used for grid connection: a detailed assessment including frequency response and algorithm comparisons for an energy conversion system. IEEE Ind Appl Mag 23(2):37–50CrossRefGoogle Scholar
  4. 4.
    Singh B, Sharma S (2012) Design and implementation of four-leg voltage-source-converter-based VFC for autonomous wind energy conversion system. IEEE Trans Ind Electron 59(12):4694–4703CrossRefGoogle Scholar
  5. 5.
    Liang J, Green TC, Feng C, Weiss G (2009) Increasing voltage utilization in split-link, four-wire inverters. IEEE Trans. Power Electron. 24(6):1562–1569CrossRefGoogle Scholar
  6. 6.
    Rivera M, Yaramasu V, Llor A, Rodriguez J, Wu B, Fadel M (2013) Digital predictive current control of a three-phase four-leg inverter. IEEE Trans Ind Electron 60(11):4903–4912CrossRefGoogle Scholar
  7. 7.
    Yaramasu V, Rivera M, Narimani M, Wu B, Rodriguez J (2014) Finite state model-based predictive current control with two-step horizon for four-leg NPC converters. J Power Electron 14(6):1178–1188CrossRefGoogle Scholar
  8. 8.
    Rodríguez J, Bernet S, Steimer PK, Lizama IE (2010) A survey on neutral-point-clamped inverters. IEEE Trans Ind Electron 57(7):2219–2230CrossRefGoogle Scholar
  9. 9.
    Kim Jang-Hwan, Sul Seung-Ki (2004) A carrier-based PWM method for three-phase four-leg voltage source converters. IEEE Trans Power Electron 19(1):66–75CrossRefGoogle Scholar
  10. 10.
    Li Xiangsheng, Deng Zhiquan, Chen Zhida, Fei Qingzhao (2011) Analysis and simplification of three-dimensional space vector PWM for three-phase four-leg inverters. IEEE Trans Ind Electron 58(2):450–464CrossRefGoogle Scholar
  11. 11.
    Ceballos S, Pou J, Zaragoza J, Martin JL, Robles E, Gabiola I, Ibanez P (2008) Efficient modulation technique for a four-leg fault-tolerant neutral-point-clamped inverter. IEEE Trans Ind Electron 55(3):1067–1074CrossRefGoogle Scholar
  12. 12.
    Yaramasu V, Rivera M, Wu B, Rodriguez J (2013) Model predictive current control of two-level four-leg inverters - Part I: concept, algorithm and simulation analysis. IEEE Trans Power Electron 28(7):3459–3468CrossRefGoogle Scholar
  13. 13.
    Vazquez S, Rodriguez J, Rivera M, Franquelo LG, Norambuena M (2017) Model predictive control for power converters and drives: advances and trends. IEEE Trans Ind Electron 64(2):935–947CrossRefGoogle Scholar
  14. 14.
    Yaramasu V, Wu B (2016) Model predictive control of wind energy conversion systems, 1st edn. Wiley-IEEE Press, HobokenGoogle Scholar
  15. 15.
    Yaramasu V, Wu B, Chen J (2014) Model-predictive control of grid-tied four-level diode-clamped inverters for high-power wind energy conversion systems. IEEE Trans Power Electron 29(6):2861–2873CrossRefGoogle Scholar
  16. 16.
    Sawant RR, Chandorkar MC (2009) A multifunctional four-leg grid-connected compensator. IEEE Trans Ind Appl 45(1):249–259CrossRefGoogle Scholar
  17. 17.
    Yaramasu V, Rivera M, Narimani M, Wu B, Rodriguez J (2014) Model predictive approach for a simple and effective load voltage control of four-leg inverter with an output \(LC\) filter. IEEE Trans Ind Electron 61(10):5259–5270CrossRefGoogle Scholar
  18. 18.
    Liu Z, Liu J, Li J (2013) Modeling, analysis and mitigation of load neutral point voltage for three-phase four-leg inverter. IEEE Trans Ind Electron 60(5):2010–2021CrossRefGoogle Scholar
  19. 19.
    Yaramasu V, Rivera M, Narimani M, Wu B, Rodriguez J (2015) High performance operation for a four-leg NPC inverter with two-sample-ahead predictive control strategy. Int J Electric Power Syst Res 123:31–39CrossRefGoogle Scholar
  20. 20.
    Yaramasu V, Rivera M, Wu B, Rodriguez J (2015) Predictive control of four-leg power converters. pp 121–125Google Scholar
  21. 21.
    Yaramasu V, Wu B, Rivera M, Rodriguez J (2013) Predictive current control and DC-link capacitor voltages balancing for four-leg NPC inverters. In: IEEE international symposium on industrial electronics (ISIE), Taipei, Taiwan. pp 1–6Google Scholar
  22. 22.
    Rodriguez J, Coŕtes P (2012) Predictive control of power converters and electrical drives, 1st edn. IEEE Wiley press, ChichesterCrossRefGoogle Scholar
  23. 23.
    Coŕtes P, Rodríguez J, Silva C, Flores A (2012) Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans Ind Electron 59(2):1323–1325CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Venkata Yaramasu
    • 1
    Email author
  • Marco Rivera
    • 2
  • Apparao Dekka
    • 3
  • Jose Rodriguez
    • 4
  1. 1.Northern Arizona UniversityFlagstaffUSA
  2. 2.Universidad de TalcaCuricoChile
  3. 3.Ryerson UniversityTorontoCanada
  4. 4.Universidad Andres BelloSantiagoChile

Personalised recommendations