Advertisement

Application of Sliding-Mode Control for Maximum Power Point Tracking of PV Systems

  • M. R. Mojallizadeh
  • M. A. BadamchizadehEmail author
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Sliding-mode controllers are widely utilized for increasing the output power of photovoltaic sources. These sliding-mode controllers are primarily based on one-loop or two-loop schemes. The two-loop scheme is composed of two loops, i.e., searching and tracking loops. A maximum power point searching unit is utilized in the searching loop, and a tracking controller is utilized in the other loop to extract the maximum photovoltaic power. Compared to this scheme, the one-loop scheme can extract the maximum photovoltaic power without any searching algorithm. In this study, dynamic equations of a typical photovoltaic power source are derived using the state-space averaging method. Afterwards, one-loop and two-loop sliding-mode control schemes are used for extracting the maximum power. Stability of both schemes is guaranteed using Lyapunov theory. Conditions of the robust stability are derived analytically for both schemes. A deterministic cuckoo search algorithm is used for maximum power point searching in the two-loop scheme. Performances of the schemes are evaluated by some experiments and numerical simulations. Results are compared in uniform and partially shaded conditions.

Notes

Acknowledgements

The project was financially supported by Iran National Science Foundation (INSF) and University of Tabriz.

References

  1. 1.
    Liu Y-H, Liu C-L, Huang J-W, Chen J-H (2013) Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol Energy 89:42–53CrossRefGoogle Scholar
  2. 2.
    Mahammad AK, Saon S, Chee WS (2013) Development of optimum controller based on MPPT for photovoltaic system during shading condition. Procedia Eng 53:337–346CrossRefGoogle Scholar
  3. 3.
    Tofighi A, Kalantar M (2011) Power management of PV/battery hybrid power source via passivity-based control. Renew Energy 36(9):2440–2450CrossRefGoogle Scholar
  4. 4.
    Mojallizadeh MR, Badamchizadeh MA (2016) Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification. IEEE J Photovolt 6(2):532–539CrossRefGoogle Scholar
  5. 5.
    Espinoza-Trejo DR, Brcenas-Brcenas E, Campos-Delgado DU, Angelo CHD (2015) Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems. IEEE Trans Ind Electron 62(6):3499–3507Google Scholar
  6. 6.
    Lalili D, Mellit A, Lourci N, Medjahed B, Boubakir C (2013) State feedback control and variable step size MPPT algorithm of three-level grid-connected photovoltaic inverter. Sol Energy 98(Part C):561–571CrossRefGoogle Scholar
  7. 7.
    Chu C-C, Chen C-L (2009) Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach. Sol Energy 83(8):1370–1378CrossRefGoogle Scholar
  8. 8.
    Zhang F, Maddy J, Premier G, Guwy A (2015) Novel current sensing photovoltaic maximum power point tracking based on sliding mode control strategy. Sol Energy 118:80–86CrossRefGoogle Scholar
  9. 9.
    Ghazanfari J, Farsangi MM (2013) Maximum power point tracking using sliding mode control for photovoltaic array. Iran J Electr Electron Eng 9:189–196Google Scholar
  10. 10.
    Chiu C-S, Ouyang Y-L, Ku C-Y (2012) Terminal sliding mode control for maximum power point tracking of photovoltaic power generation systems. Sol Energy 86(10):2986–2995CrossRefGoogle Scholar
  11. 11.
    Mojallizadeh MR, Badamchizadeh MA (2016) Chattering free full-order terminal sliding-mode control for maximum power point tracking of photovoltaic cells. IET Renew Power Gener 532–539Google Scholar
  12. 12.
    Mojallizadeh MR, Badamchizadeh M, Khanmohammadi S, Sabahi M (2016) Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells. Sol Energy 132:538–546CrossRefGoogle Scholar
  13. 13.
    Dahech K, Allouche M, Damak T, Tadeo F (2017) Backstepping sliding mode control for maximum power point tracking of a photovoltaic system. Electr Power Syst Res 143:182–188CrossRefGoogle Scholar
  14. 14.
    Pradhan R, Subudhi B (2016) Double integral sliding mode mppt control of a photovoltaic system. IEEE Trans Control Syst Technol 24(1):285–292CrossRefGoogle Scholar
  15. 15.
    Valencia PAO, Ramos-Paja CA (2015) Sliding-mode controller for maximum power point tracking in grid-connected photovoltaic systems. Energies 8(11):12 363–12 387CrossRefGoogle Scholar
  16. 16.
    Mojallizadeh MR, Badamchizadeh M (2017) Second-order fuzzy sliding-mode control of photovoltaic power generation systems. Sol Energy 149:332–340CrossRefGoogle Scholar
  17. 17.
    Utkin V (2013) Sliding mode control of dc/dc converters. J Frankl Inst 350(8):2146–2165MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yau H-T, Chen C-L (2012) Fuzzy sliding mode controller design for maximum power point tracking control of a solar energy system. Trans Inst Meas Control 34(5):557–565CrossRefGoogle Scholar
  19. 19.
    Enany MA, Farahat MA, Nasr A (2016) Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems. Renew Sustain Energy Rev 58:1578–1586CrossRefGoogle Scholar
  20. 20.
    Kish GJ, Lee JJ, Lehn PW (2012) Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking. IET Renew Power Gener 6(4):259–266CrossRefGoogle Scholar
  21. 21.
    Peng BR, Ho KC, Liu YH (2018) A novel and fast MPPT method suitable for both fast changing and partially shaded conditions. IEEE Trans Ind Electron 65(4):3240–3251CrossRefGoogle Scholar
  22. 22.
    Park J-Y, Choi S-J (2015) A novel datasheet-based parameter extraction method for a single-diode photovoltaic array model. Sol Energy 122:1235–1244CrossRefGoogle Scholar
  23. 23.
    Ngamkong P, Kochcha P, Areerak K, Sujitjorn S, Areerak K (2012) Applications of the generalized state-space averaging method to modelling of dc-dc power converters. Math Comput Model Dyn Syst 18(3):243–260MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wai R-J, Shih L-C (2011) Design of voltage tracking control for dc-dc boost converter via total sliding-mode technique. IEEE Trans Ind Electron 58(6):2502–2511CrossRefGoogle Scholar
  25. 25.
    Ayop R, Tan CW (2018) Design of boost converter based on maximum power point resistance for photovoltaic applications. Sol Energy 160:322–335CrossRefGoogle Scholar
  26. 26.
    Lu DD, Nguyen QN (2012) A photovoltaic panel emulator using a buck-boost dc/dc converter and a low cost micro-controller. Sol Energy 86(5):1477–1484CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of TabrizTabrizIran

Personalised recommendations