Advertisement

An Online Self Recurrent Direct Adaptive Neuro-Fuzzy Wavelet Based Control of Photovoltaic Systems

  • Syed Zulqadar HassanEmail author
  • Tariq Kamal
  • Sidra Mumtaz
  • Laiq Khan
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Solar through photovoltaic is an inexhaustible energy source which contributes to enhance the sustainability of the society. Though, photovoltaic systems experience some fundamental problems such as low conversion efficiency particularly during high weather variations and the high nonlinearity between the photovoltaic output power and current. These problems involve in photovoltaic systems need the use of advanced intelligent control methods. This book chapter develops a new direct adaptive maximum power point tracking control for photovoltaic systems. The new proposed technique integrates a Chebyshev wavelet in the consequent part of existing neuro-fuzzy structure. The parameters of the proposed controller are tuned adaptively online using backpropagation algorithm. The performance of the proposed method is tested under high uncertainties appearing from solar irradiance, temperature and fluctuations in load. Finally, simulation results are provided to show that the proposed control method is better than other existing methods in terms of efficiency, load tracking and output power.

References

  1. 1.
    Putri RI, Wibowo S, Rifa’i M (2015) Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68:22–30. https://doi.org/10.1016/j.egypro.2015.03.228CrossRefGoogle Scholar
  2. 2.
    Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt 3(3):1070–1078. https://doi.org/10.1109/JPHOTOV.2013.2261118CrossRefGoogle Scholar
  3. 3.
    Kjær SB (2012) Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems. IEEE Trans Energy Convers 27(4):922–929. https://doi.org/10.1109/TEC.2012.2218816CrossRefGoogle Scholar
  4. 4.
    Ishaque K, Salam Z, Lauss G (2014) The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl Energy 119:228–236. https://doi.org/10.1016/j.apenergy.2013.12.054CrossRefGoogle Scholar
  5. 5.
    Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61(10):5384–5392. https://doi.org/10.1109/TIE.2014.2304921CrossRefGoogle Scholar
  6. 6.
    Alik R, Jusoh A (2017) Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol Energy 148:128–139. https://doi.org/10.1016/j.solener.2017.03.064CrossRefGoogle Scholar
  7. 7.
    Libo W, Zhengming Z, Jianzheng L (2007) A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation. IEEE Trans Energy Convers 22(4):881–886. https://doi.org/10.1109/TEC.2007.895461CrossRefGoogle Scholar
  8. 8.
    Chu C-C, Chen C-L (2009) Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach. Sol Energy 83(8):1370–1378. https://doi.org/10.1016/j.solener.2009.03.005CrossRefGoogle Scholar
  9. 9.
    Lalili D, Mellit A, Lourci N, Medjahed B, Berkouk EM (2011) Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter. Renew Energy 36(12):3282–3291. https://doi.org/10.1016/j.renene.2011.04.027CrossRefGoogle Scholar
  10. 10.
    Esram T, Kimball JW, Krein PT, Chapman PL, Midya P (2006) Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power Electron 21(5):1282–1291. https://doi.org/10.1109/TPEL.2006.880242CrossRefGoogle Scholar
  11. 11.
    Shah I, ur Rehman F (2017) Smooth higher-order sliding mode control of a class of underactuated mechanical systems. Arab J Sci Eng 42(12):5147–5164. https://doi.org/10.1007/s13369-017-2617-9MathSciNetCrossRefGoogle Scholar
  12. 12.
    Alajmi BN, Ahmed KH, Finney SJ, Williams BW (2011) Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030. https://doi.org/10.1109/TPEL.2010.2090903CrossRefGoogle Scholar
  13. 13.
    Shaiek Y, Smida MB, Sakly A, Mimouni MF (2013) Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Sol Energy 90:107–122. https://doi.org/10.1016/j.solener.2013.01.005CrossRefGoogle Scholar
  14. 14.
    Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Appl Energy 119:118–130. https://doi.org/10.1016/j.apenergy.2013.12.062CrossRefGoogle Scholar
  15. 15.
    Titri S, Larbes C, Toumi KY, Benatchba K (2017) A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl Soft Comput 58:465–479. https://doi.org/10.1016/j.asoc.2017.05.017CrossRefGoogle Scholar
  16. 16.
    Ishaque K, Salam Z, Shamsudin A, Amjad M (2012) A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl Energy 99:414–422. https://doi.org/10.1016/j.apenergy.2012.05.026CrossRefGoogle Scholar
  17. 17.
    Hassan SZ, Li H, Kamal T, Nadarajah M, Mehmood F (2016) Fuzzy embedded MPPT modeling and control of PV system in a hybrid power system. In: 2016 international conference on emerging technologies (ICET). IEEE, pp. 1–6. https://doi.org/10.1109/ICET.2016.7813236
  18. 18.
    Rahmani B, Li W (2017) A current-based fuzzy controller for MPPT of grid-connected PV systems. J Renew Sustain Energy 9(2):23503. https://doi.org/10.1063/1.4977826CrossRefGoogle Scholar
  19. 19.
    Khaldi N, Mahmoudi H, Zazi M, Barradi Y (2014) The MPPT control of PV system by using neural networks based on Newton Raphson method. In: 2014 international renewable and sustainable energy conference (IRSEC). IEEE, pp. 19–24. https://doi.org/10.1109/IRSEC.2014.7059894
  20. 20.
    Sedaghati F, Nahavandi A, Badamchizadeh MA, Ghaemi S, Abedinpour Fallah M (2012) PV maximum power-point tracking by using artificial neural network. Math Probl Eng 2012:1–10. https://doi.org/10.1155/2012/506709CrossRefGoogle Scholar
  21. 21.
    Vazquez JR, Martin AD, Herrera RS (2013) Neuro-Fuzzy control of a grid-connected photovoltaic system with power quality improvement. In: 2013 IEEE EUROCON. IEEE, pp. 850–857. https://doi.org/10.1109/EUROCON.2013.6625082
  22. 22.
    Chen SX, Gooi HB, Wang MQ (2013) Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy 60:195–201. https://doi.org/10.1016/j.renene.2013.05.011CrossRefGoogle Scholar
  23. 23.
    Kamal T, Karabacak M, Hassan SZ, Li H, Fernandez LM (2018) A robust online adaptive B-spline MPPT control of three-phase grid-coupled photovoltaic systems under real partial shading condition. IEEE Trans Energy Convers, p. 1. https://doi.org/10.1109/TEC.2018.2878358
  24. 24.
    Hassan SZ, Li H, Kamal T, Arifoǧlu U, Mumtaz S, Khan L (2017) Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems. Energies 10(3):394 . https://doi.org/10.3390/en10030394CrossRefGoogle Scholar
  25. 25.
    Abiyev RH, Kaynak O (2008) Identification and control of dynamic plants using fuzzy wavelet neural networks. In: 2008 IEEE international symposium on intelligent control. IEEE, pp. 1295–1301Google Scholar
  26. 26.
    Badar R, Khan L (2013) Hybrid neuro-fuzzy legendre-based adaptive control algorithm for static synchronous series compensator. Electr Power Compon Syst 41(9):845–867. https://doi.org/10.1080/15325008.2013.792882CrossRefGoogle Scholar
  27. 27.
    Mukerjee AK, Dasgupta N (2007) DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renew Energy 32(4):587–592. https://doi.org/10.1016/j.renene.2006.02.010CrossRefGoogle Scholar
  28. 28.
    Pakistan (2018) Pakistan meteorological department solar radiation dataGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Syed Zulqadar Hassan
    • 1
    Email author
  • Tariq Kamal
    • 2
    • 3
  • Sidra Mumtaz
    • 4
  • Laiq Khan
    • 4
  1. 1.School of Electrical EngineeringChongqing UniversityChongqingChina
  2. 2.Faculty of Engineering, Department of Electrical and Electronics EngineeringSakarya UniversitySakaryaTurkey
  3. 3.Research Group in Electrical Technologies for Sustainable and Renewable Energy (PAIDI-TEP023), Department of Electrical Engineering, Higher Polytechnic School of AlgecirasUniversity of CadizAlgecirasSpain
  4. 4.Department of Electrical EngineeringCOMSATS UniversityIslamabadPakistan

Personalised recommendations