Advertisement

Microstructure and Mechanical Properties of Multilayered α-AlN/α-BCN Coatings Depending on Flux Density During Target B4C Sputtering

  • V. I. Ivashchenko
  • V. M. RogozEmail author
  • T. N. Koltunowicz
  • A. I. Kupchishin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Multilayered AlN/BCN coatings with nanoscale layers were fabricated by magnetron sputtering of Al and B4C targets on Si substrate. Deposited amorphous AlN/BCN coatings have demonstrated increased nano- and Knoop hardnesses, Young’s modulus in compare with AlN and BCN coatings, which explained by strain modulation in amorphous layers of AlN and BCN. The application of flux density IB4C (100 mA) has led to significant increasing of hardness from 18 to 27 GPa due to the formation of α-BCN phase according to Fourier spectra. Nanolayered coatings have been thermally stable up to 600 °C due to the slow diffusion processes in amorphous sublayer, which indicates higher oxidation resistance then nanocrystalline.

Keywords

Multilayers Coatings Mechanical properties XRD investigation 

Notes

Acknowledgements

This work was done under the aegis of Ukrainian state budget program «Physical basis of forming of composition and properties of nanostructured boride, nitride and boron-nitride films of refractory metals for their usage in machine building» (No 0116U002621). Authors are grateful to Prof. O. D. Pogrebnyak and A.A. Bagdasaryan for discussing the results of the research.

References

  1. 1.
    Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318. https://doi.org/10.1016/j.matlet.2017.09.121Google Scholar
  2. 2.
    Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59.  https://doi.org/10.1016/j.matdes.2018.05.001Google Scholar
  3. 3.
    Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196.  https://doi.org/10.1016/j.matchar.2018.03.048Google Scholar
  4. 4.
    Kadyrzhanov EY, Zdorovets DB, Kozlovskiy M et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73.  https://doi.org/10.21122/2220-9506-2018-9-1-66-73Google Scholar
  5. 5.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B 86(1):14110.  https://doi.org/10.1103/PhysRevB.86.014110
  6. 6.
    Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys Usp 55(3):270. Available at: http://stacks.iop.org/1063-7869/55/i=3/a=A04Google Scholar
  7. 7.
    Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516.  https://doi.org/10.1016/j.ceramint.2016.11.052Google Scholar
  8. 8.
    Van Bui H, Wiggers FB, Gupta A et al (2015) Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films. J Vac Sci Technol A Vac, Surfaces, Film 33(1):01A111.  https://doi.org/10.1116/1.4898434Google Scholar
  9. 9.
    Banal RG, Imura M, Liu J et al (2016) Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors. J Appl Phys 120(11):115307.  https://doi.org/10.1063/1.4962854Google Scholar
  10. 10.
    Aissa KA, Achour A, Camus J et al (2014) Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures. Thin Solid Films 550:264–267.  https://doi.org/10.1016/j.tsf.2013.11.073Google Scholar
  11. 11.
    Shin I, Kim J, Lee D et al (2018) Epitaxial growth of single-crystalline AlN layer on Si(111) by DC magnetron sputtering at room temperature. Jpn J Appl Phys 57(6):060306.  https://doi.org/10.7567/JJAP.57.060303Google Scholar
  12. 12.
    Su X, Zhang J, Huang J et al (2017) Defect structure of high temperature hydride vapor phase epitaxy–grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process. J Cryst Growth 467(1):82–87.  https://doi.org/10.1016/j.jcrysgro.2017.03.031Google Scholar
  13. 13.
    Trant M, Fischer M, Thorwarth K et al (2018) Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system. Surf Coatings Technol 348:159–167.  https://doi.org/10.1016/j.surfcoat.2018.04.091Google Scholar
  14. 14.
    Wang H, Sodabanlu H, Daigo Y et al (2016) Initial growth control of GaN on Si with physical-vapor-deposition-AlN seed layer for high-quality GaN templates. Appl Phys Express 9(5):055503.  https://doi.org/10.7567/APEX.9.055503Google Scholar
  15. 15.
    Murillo AE, Melo-Máximo L, García-Farrera B et al (2018) Development of AlN thin films for breast cancer acoustic biosensors. J Mater Res Technol.  https://doi.org/10.1016/j.jmrt.2018.02.007
  16. 16.
    Welz R, Howell K, Luis P (2018) Optimization of sputter deposition Process for piezoelectric AlN ultra-thin Films. Semester Project Advanced NEMS group, Autumn Semester 2017, Losanna, Jan 2018Google Scholar
  17. 17.
    Riah B, Ayad A, Camus J et al (2018) Textured hexagonal and cubic phases of AlN films deposited on Si (100) by DC magnetron sputtering and high power impulse magnetron sputtering. Thin Solid Films 655(100):34–40.  https://doi.org/10.1016/j.tsf.2018.03.076Google Scholar
  18. 18.
    Pu K, Dai X, Miao D et al (2017) A kinetics model for MOCVD deposition of AlN film based on Grove theory. J Cryst Growth 478:42–46.  https://doi.org/10.1016/j.jcrysgro.2017.08.012Google Scholar
  19. 19.
    Wistrela E, Schneider M, Bittner A et al (2016) Impact of the substrate dependent polarity distribution in c-axis oriented AlN thin films on the etching behaviour and the piezoelectric properties. Microsyst Technol 22(7):1691–1700.  https://doi.org/10.1007/s00542-015-2799-6Google Scholar
  20. 20.
    Balaji M, Ramesh R, Arivazhagan P et al (2015) Influence of initial growth stages on AlN epilayers grown by metal organic chemical vapor deposition. J Cryst Growth 414:69–75.  https://doi.org/10.1016/j.jcrysgro.2014.10.055Google Scholar
  21. 21.
    Aissa KA, Achour A, Elmazria O et al (2015) AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications. J Phys D Appl Phys 48(14):145307.  https://doi.org/10.1088/0022-3727/48/14/145307Google Scholar
  22. 22.
    Duta L, Stan GE, Stroescu H et al (2016) Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. Appl Surf Sci 374:143–150.  https://doi.org/10.1016/j.apsusc.2015.10.093Google Scholar
  23. 23.
    D’Acapito F, Torrengo S, Xenogiannopoulou E et al (2016) Evidence for Germanene growth on epitaxial hexagonal (h)-AlN on Ag(1 1 1). J Phys Condens Matter 28(4):45002.  https://doi.org/10.1088/0953-8984/28/4/045002Google Scholar
  24. 24.
    Wang H, Liu Y, Li M et al (2010) Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4(8):1166–1169.  https://doi.org/10.1039/b000000x
  25. 25.
    Kohout J, Qian J, Schmitt T et al (2017) Hard AlN films prepared by low duty cycle magnetron sputtering and by other deposition techniques. J Vac Sci Technol A Vacuum, Surfaces, Film 35(6):61505.  https://doi.org/10.1116/1.4999460Google Scholar
  26. 26.
    Caban P, Rudzinski M, Wojcik M et al (2015) Growth of aluminium nitride with linear change of ammonia flow. J Cryst Growth 414:81–86.  https://doi.org/10.1016/j.jcrysgro.2014.11.015Google Scholar
  27. 27.
    Iqbal A, Walker G, Iacopi A et al (2016) Controlled sputtering of AlN (002) and (101) crystal orientations on epitaxial 3C-SiC-on-Si (100) substrate. J Cryst Growth 440(2):76–80.  https://doi.org/10.1016/j.jcrysgro.2016.01.037Google Scholar
  28. 28.
    Ji Z, Wang L, Zhao G et al (2017) Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition. Chin Phys B 26(7):078102.  https://doi.org/10.1088/1674-1056/26/7/078102Google Scholar
  29. 29.
    Huang WC, Chu CM, Wong YY et al (2016) Investigations of GaN growth on the sapphire substrate by MOCVD method with different AlN buffer deposition temperatures. Mater Sci Semicond Process 45:1–8.  https://doi.org/10.1016/j.mssp.2016.01.008Google Scholar
  30. 30.
    Motamedi P, Cadien K (2015) Structural and optical characterization of low-temperature ALD crystalline AlN. J Cryst Growth 421:45–52.  https://doi.org/10.1016/j.jcrysgro.2015.04.009Google Scholar
  31. 31.
    Mazur MM, Pianaro SA, Portella KF et al (2015) Deposition and characterization of AlN thin films on ceramic electric insulators using pulsed DC magnetron sputtering. Surf Coatings Technol 284:247–251.  https://doi.org/10.1016/j.surfcoat.2015.06.082Google Scholar
  32. 32.
    Li XH, Wei YO, Wang S et al (2015) Temperature dependence of the crystalline quality of AlN layer grown on sapphire substrates by metalorganic chemical vapor deposition. J Cryst Growth 414:76–80.  https://doi.org/10.1016/j.jcrysgro.2014.10.007Google Scholar
  33. 33.
    Moreira MA, Törndahl T, Katardjiev I et al (2015) Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering. J Vac Sci Technol A Vacuum, Surfaces, Film 33(2):21518.  https://doi.org/10.1116/1.4907874Google Scholar
  34. 34.
    Schmerler S, Kortus J (2014) Ab initio study of AlN: anisotropic thermal expansion, phase diagram, and high-temperature rocksalt to wurtzite phase transition. Phys Rev B—Condens Matter Mater Phys 89(6):064109.  https://doi.org/10.1103/PhysRevB.89.064109Google Scholar
  35. 35.
    Sun X, Li JS, Cheng HF (2015) Influence of temperatures on the formation of SiBCN powders prepared by CVD Using Borazine and Liquid Polycarbosilane. Mater Sci Forum 816:182–185.  https://doi.org/10.4028/www.scientific.net/MSF.816.182Google Scholar
  36. 36.
    Prakash A, Sundaram KB (2016) Deposition and XPS studies of dual sputtered BCN thin films. Diam Relat Mater 64:80–88.  https://doi.org/10.1016/j.diamond.2016.01.014Google Scholar
  37. 37.
    Xiao JL, Wang CB, Shen Q et al (2015) Influence of nitrogen pressure on bonding structure and mechanical properties of pulsed laser deposited BCN thin films. Surf Coatings Technol 276:141–144.  https://doi.org/10.1016/j.surfcoat.2015.06.070Google Scholar
  38. 38.
    Wang CB, Xiao JL, Shen Q et al (2016) Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences. Thin Solid Films 603:323–327.  https://doi.org/10.1016/j.tsf.2016.02.053Google Scholar
  39. 39.
    Tavsanoglu T, Jeandin M, Addemir O (2016) Synthesis and characterisation of thin films in the B–C–N triangle. Surf Eng 32(10):755–760.  https://doi.org/10.1080/02670844.2016.1143197Google Scholar
  40. 40.
    Zhang T, Zhang J, Wen G et al (2018) Ultra-light h-BCN architectures derived from new organic monomer with tunable electromagnetic wave absorption. Carbon 136:345–358.  https://doi.org/10.1016/j.carbon.2018.05.001Google Scholar
  41. 41.
    Xu S, Ma X, Tang G et al (2015) Air annealing effect on scratch behaviour of BCN films. Surf Eng 31(7):1–7.  https://doi.org/10.1179/1743294414y.0000000447Google Scholar
  42. 42.
    Xing M, Li B, Yu Z et al (2016) Elastic anisotropic and thermodynamic properties of I-4m2-BCN. Acta Phys Pol A 129(6):1124–1130.  https://doi.org/10.12693/aphyspola.129.1124Google Scholar
  43. 43.
    Chen D, Huang Y, Hu X et al (2018) Synthesis and characterization of “Ravine-Like” BCN compounds with high capacitance. Materials (Basel) 11(2):209.  https://doi.org/10.3390/ma11020209Google Scholar
  44. 44.
    Hirte T, Feuerfeil R, Perez-Solorzano V et al (2015) Influence of composition on the wear properties of boron carbonitride (BCN) coatings deposited by high power impulse magnetron sputtering. Surf Coatings Technol 284:94–100.  https://doi.org/10.1016/j.surfcoat.2015.07.077Google Scholar
  45. 45.
    Deng X, Kousaka H, Tokoroyama T et al (2014) Deposition and tribological behaviors of ternary BCN coatings at elevated temperatures. Surf Coatings Technol 259:2–6.  https://doi.org/10.1016/j.surfcoat.2014.08.087Google Scholar
  46. 46.
    Mannan A, Baba Y, Kida T et al (2015) Synthesis of Hexagonal boron carbonitride without nitrogen void defects. MSA 6(05):353–359.  https://doi.org/10.4236/msa.2015.65041Google Scholar
  47. 47.
    Li Y, Jia X, Shi W et al (2014) The preparation of new “BCN” diamond under higher pressure and higher temperature. Int J Refract Met Hard Mater 43:147–149.  https://doi.org/10.1016/j.ijrmhm.2013.11.010Google Scholar
  48. 48.
    Houska J, Steidl P, Vlcek J et al (2016) Thermal, mechanical and electrical properties of hard B4C, BCN, ZrBC and ZrBCN ceramics. Ceram Int 42(3):4361–4369.  https://doi.org/10.1016/j.ceramint.2015.11.115Google Scholar
  49. 49.
    Jin Y, Yasuhara S, Shimizu T et al (2015) Deposition of Boron Nitride Films by Filament-Assisted CVD Using Tris(Bimethylamino)Borane Precursor. Key Eng Mater 661:142–148. 10.4028/www.scientific.net/KEM.661.142Google Scholar
  50. 50.
    Prakash A, Sundaram KB, Campiglia AD (2016) Photoluminescence studies on BCN thin films synthesized by RF magnetron sputtering. Mater Lett 183:355–358.  https://doi.org/10.1016/j.matlet.2016.07.140Google Scholar
  51. 51.
    Petrović M, Horn-von Hoegen M, Meyer zu Heringdorf FJ (2018) Lateral heterostructures of hexagonal boron nitride and graphene: BCN alloy formation and microstructuring mechanism. Appl Surf Sci 455(111):1086–1094.  https://doi.org/10.1016/j.apsusc.2018.06.057Google Scholar
  52. 52.
    Pogrebnjak AD, Bagdasaryan AA, Pshyk A et al (2017) Adaptive multicomponent nanocomposite coatings in surface engineering. Uspekhi Fiz Nauk 187(6):586–607.  https://doi.org/10.3367/ufnr.2016.12.038018Google Scholar
  53. 53.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94.  https://doi.org/10.1016/j.compositesb.2018.01.004Google Scholar
  54. 54.
    Musil J, Sklenka J, Cerstvy R (2012) Transparent Zr-Al-O oxide coatings with enhanced resistance to cracking. Surf Coatings Technol 206(8–9):2105–2109.  https://doi.org/10.1016/j.surfcoat.2011.09.035Google Scholar
  55. 55.
    Veprek S, Veprek-Heijman MGJ, Karvankova P et al (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29.  https://doi.org/10.1016/j.tsf.2004.10.053Google Scholar
  56. 56.
    Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92.  https://doi.org/10.1016/j.tsf.2015.02.013Google Scholar
  57. 57.
    Kasiuk J V, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586:S432–S435.  https://doi.org/10.1016/j.jallcom.2012.09.058Google Scholar
  58. 58.
    Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52(5):802–813.  https://doi.org/10.1134/s2070205116050191Google Scholar
  59. 59.
    Pogrebnyak AD, Shpak A, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52(1):29–54.  https://doi.org/10.3367/ufne.0179.200901b.0035Google Scholar
  60. 60.
    Berladir KV, Budnik OA, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a review. High Temp Mater Process Int Q High-Technol Plasma Process 20(2):157–184.  https://doi.org/10.1615/hightempmatproc.2016017875Google Scholar
  61. 61.
    Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756.  https://doi.org/10.1016/j.ceramint.2016.04.095Google Scholar
  62. 62.
    Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings. J Nanomater 2013:1–12.  https://doi.org/10.1155/2013/780125Google Scholar
  63. 63.
    Pogrebnjak A, Ivashchenko V, Bondar O et al (2017) Multilayered vacuum-arc nanocomposite TiN/ ZrN coatings before and after annealing: structure, properties, first-principles calculations. Mater Charact 134:55–63.  https://doi.org/10.1016/j.matchar.2017.10.016Google Scholar
  64. 64.
    Mayrhofer PH, Hovsepian PE, Mitterer C et al (2004) Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings. Surf Coatings Technol 177:341–347.  https://doi.org/10.1016/j.surfcoat.2003.09.024Google Scholar
  65. 65.
    Ou YX, Lin J, Tong S et al (2016) Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surf Coatings Technol 293:21–27.  https://doi.org/10.1016/j.surfcoat.2015.10.009Google Scholar
  66. 66.
    Pogrebnyak AD, Bondar OV, Zhollybekov B et al (2017) Influence of the bilayer thickness of nanostructured multilayer MoN/CrN coating on its microstructure, hardness, and elemental composition. Phys Solid State 59(9):1798–1802.  https://doi.org/10.1134/s1063783417090232Google Scholar
  67. 67.
    Kumar DD, Kumar N, Kalaiselvam S et al (2017) Wear resistant super-hard multilayer transition metal-nitride coatings. Surfaces Interfaces 7:74–82.  https://doi.org/10.1016/j.surfin.2017.03.001Google Scholar
  68. 68.
    Chang Y-Y, Chiu W-T, Hung J-P (2016) Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf Coatings Technol 303:18–24.  https://doi.org/10.1016/j.surfcoat.2016.02.047Google Scholar
  69. 69.
    Yousaf MI, Pelenovich VO, Yang B et al (2015) Effect of bilayer period on structural and mechanical properties of nanocomposite TiAlN/MoN multilayer films synthesized by cathodic arc ion-plating. Surf Coatings Technol 282:94–102.  https://doi.org/10.1016/j.surfcoat.2015.10.018Google Scholar
  70. 70.
    Yu R-S, Huang R-H, Lee C-M et al (2012) Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition. Appl Surf Sci 263:58–61.  https://doi.org/10.1016/j.apsusc.2012.08.109Google Scholar
  71. 71.
    Bagdasaryan AA, Pshyk AV, Coy LE et al (2018) A new type of (TiZrNbTaHf) N/MoN nanocomposite coating: microstructure and properties depending on energy of incident ions. Compos Part B Eng 146:132–144.  https://doi.org/10.1016/j.compositesb.2018.04.015Google Scholar
  72. 72.
    Pogrebnjak AD, Isakov IF, Opekunov MS et al (1987) Increased wear resistance and positron annihilation in Cu exposed to high power ion beam. Phys Lett A 123(8):410–412.  https://doi.org/10.1016/0375-9601(87)90043-0Google Scholar
  73. 73.
    Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7.  https://doi.org/10.1016/s0042-207x(01)00160-9Google Scholar
  74. 74.
    Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 63(4):483–486.  https://doi.org/10.1016/s0042-207x(01)00225-1Google Scholar
  75. 75.
    Demianenko A, Smyrnova K, Zhollybekov B et al (2015) Process of formation of spheroidal gold particles and of nanophases in AlN-TiB2-TiSi2 coatings after annealing with subsequent implantation. High Temp Mater Process 19(2):189–200.  https://doi.org/10.1615/hightempmatproc.2016016017Google Scholar
  76. 76.
    Bagdasaryan AA, Pshyk AV, Coy LE et al (2018) Structural and mechanical characterization of (TiZrNbHfTa) N/WN multilayered nitride coatings. Mater Lett 229:364–367.  https://doi.org/10.1016/j.matlet.2018.07.048Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • V. I. Ivashchenko
    • 1
  • V. M. Rogoz
    • 2
    Email author
  • T. N. Koltunowicz
    • 3
  • A. I. Kupchishin
    • 4
  1. 1.Frantsevich Institute for Materials Science Problems, National Academy of Sciences of UkraineKievUkraine
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.Lublin University of TechnologyLublinPoland
  4. 4.Abai Kazakh National Pedagogical UniversityAlmatyKazakhstan

Personalised recommendations