Advertisement

DSC Investigations of the Effect of Annealing Temperature on the Phase Transformation Behaviour in (Zr–Ti–Nb)N Coatings Deposited by CA-PVD

  • O. V. MaksakovaEmail author
  • M. K. Kylyshkanov
  • S. Simoẽs
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Changes in thermal transformation properties due to annealing and consequent cooling within the temperature ranged from 30 to 1400 °C were studied for (Zr–Ti–Nb)N coatings by differential scanning calorimetry (DSC) measurements in an argon atmosphere. Temperature and phase transformations in investigated coatings occurred in two stages: at intermediate temperature region (>670 °C) and high-temperature region (>1100 °C). There were also noticeable changes in values of heat capacity depending on nitrogen pressure applied during a deposition process.

Keywords

Nitrides PVD Heat capacity Enthalpy 

Notes

Acknowledgements

The authors gratefully to Ministry of Education and Science of Ukraine for financial support (Project No. 0118U003579 and 0117U003923). Authors are very thankful to Prof. A. D. Pogrebnjak from Sumy State University for project supervision and analysis of results and Prof. V. M. Beresnev from V. N. Karazin Kharkiv National University for deposition of the samples.

References

  1. 1.
    Navinsek B, Seal S (2001) Transition metal nitride functional coatings. JOM 53:51–54.  https://doi.org/10.1007/s11837-001-0072-1CrossRefGoogle Scholar
  2. 2.
    Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498.  https://doi.org/10.1021/cr950232uCrossRefGoogle Scholar
  3. 3.
    Pogrebnyak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52:29–54.  https://doi.org/10.3367/UFNr.0179.200901b.0035CrossRefGoogle Scholar
  4. 4.
    Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys. Polonica A 123:816–818.  https://doi.org/10.12693/APhysPolA.123.816CrossRefGoogle Scholar
  5. 5.
    Pogrebnjak AD, Bor’ba SO, Kravchenko YaO et al (2016) Effect of the high doze of N+ (1018 cm−2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties. J Superhard Mater 38:393–401.  https://doi.org/10.3103/S1063457616060034CrossRefGoogle Scholar
  6. 6.
    Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196.  https://doi.org/10.1016/j.matchar.2018.03.048CrossRefGoogle Scholar
  7. 7.
    Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7.  https://doi.org/10.1016/S0042-207X(01)00160-9CrossRefGoogle Scholar
  8. 8.
    Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318.  https://doi.org/10.1016/j.matlet.2017.09.121CrossRefGoogle Scholar
  9. 9.
    Berladir KV, Budnik AO, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetraflouroethylene – a review. High Temp Mater Process 20(2):157–184.  https://doi.org/10.1615/HighTempMatProc2016017875CrossRefGoogle Scholar
  10. 10.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem 11:10757–10816.  https://doi.org/10.1039/b907148bCrossRefGoogle Scholar
  11. 11.
    Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92.  https://doi.org/10.1016/j.tsf.2015.02.013CrossRefGoogle Scholar
  12. 12.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2014) First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films 564:284–293.  https://doi.org/10.1016/j.tsf.2014.05.036CrossRefGoogle Scholar
  13. 13.
    Milošev I, Strehblow HH, Navinšek B (1997) Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation. Thin Solid Films 303(1–2):246–254.  https://doi.org/10.1016/S0040-6090(97)00069-2CrossRefGoogle Scholar
  14. 14.
    Bondar OV, Postol’nyi BA, Beresnev VM et al (2015) Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J. Superhard Mater 37(1):27–38.  https://doi.org/10.3103/S1063457615010050CrossRefGoogle Scholar
  15. 15.
    Mercier F, Coindeau S, Lay S et al (2014) Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surf Coatings Technol 260:126–132.  https://doi.org/10.1016/j.surfcoat.2014.08.084CrossRefGoogle Scholar
  16. 16.
    Benkahoul M, Martinez E, Karimi A et al (2004) Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films. Surf Coatings Technol 180–181:178–183.  https://doi.org/10.1016/j.surfcoat.2003.10.040CrossRefGoogle Scholar
  17. 17.
    McIntyre D, Greene JE, Håkansson G et al (1990) Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5 N films: kinetics and mechanisms. J Appl Phys 67:1542–1553.  https://doi.org/10.1063/1.345664CrossRefGoogle Scholar
  18. 18.
    Deeleard T, Buranawong A, Choeysuppaket A et al (2012) Structure and composition of TiVN thin films deposited by reactive DC magnetron co-sputtering. Proc Eng 32:1000–1005.  https://doi.org/10.1016/j.proeng.2012.02.045CrossRefGoogle Scholar
  19. 19.
    Cheng YH, Browne T, Heckerman B et al (2010) Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf Coatings Technol 204(14):2123–2129.  https://doi.org/10.1016/j.surfcoat.2009.11.034CrossRefGoogle Scholar
  20. 20.
    Rogström L, Ghafoor N, Schroeder J et al (2015) Thermal stability of wurtzite Zr1-xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing. J Appl Phys 118:035309.  https://doi.org/10.1063/1.4927156CrossRefGoogle Scholar
  21. 21.
    Jiang X, Yang FC, Chen WC et al (2017) Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. Surf Coatings Technol 320:138–145.  https://doi.org/10.1016/j.surfcoat.2017.01.085CrossRefGoogle Scholar
  22. 22.
    Kasiuk JV, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586:S432–S435.  https://doi.org/10.1016/j.jallcom.2012.09.058CrossRefGoogle Scholar
  23. 23.
    Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516.  https://doi.org/10.1016/j.ceramint.2016.11.052CrossRefGoogle Scholar
  24. 24.
    Saladukhin IA, Abadias G, Michel A et al (2015) Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films 581:25–31.  https://doi.org/10.1016/j.tsf.2014.11.020CrossRefGoogle Scholar
  25. 25.
    Riedl H, Holec D, Rachbauer R et al (2013) Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings. Surf Coatings Technol 235:174–180.  https://doi.org/10.1016/j.surfcoat.2013.07.030CrossRefGoogle Scholar
  26. 26.
    Koller CM, Hollerweger R, Sabitzer C et al (2014) Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surf Coatings Technol 259:599–607.  https://doi.org/10.1016/j.surfcoat.2014.10.024CrossRefGoogle Scholar
  27. 27.
    Abadias G, Saladukhin IA, Uglov VV et al (2013) Thermal stability and oxidation behavior of quaternary TiZrAlN magnetron sputtered thin films: Influence of the pristine microstructure. Surf Coatings Technol 237:187–195.  https://doi.org/10.1016/j.surfcoat.2013.07.055CrossRefGoogle Scholar
  28. 28.
    Miletić A, Panjan P, Škorić B et al (2014) Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering. Surf Coatings Technol 241:105–111.  https://doi.org/10.1016/j.surfcoat.2013.10.050CrossRefGoogle Scholar
  29. 29.
    Mitterer C (2014) PVD and CVD Hard Coatings. In: Sarin VK, Llanes L, Mari D (eds) Comprehensive Hard Materials, 1st edn, vol 2. Elsevier, pp 449–467.  https://doi.org/10.1016/B978-0-08-096527-7.00035-0CrossRefGoogle Scholar
  30. 30.
    Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 63(4):483–486.  https://doi.org/10.1016/S0042-207X(01)00225-1CrossRefGoogle Scholar
  31. 31.
    Kadyrzhanov DB, Zdorovets MV, Kozlovskiy AL et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73.  https://doi.org/10.21122/2220-9506-2018-9-1-66-73CrossRefGoogle Scholar
  32. 32.
    Beresnev VM, Sobol OV, Grankin SS et al (2016) Physical and mechanical properties of (Ti–Zr–Nb)N coatings fabricated by vacuum-arc deposition. Inorg Mater Appl Res 7(3):388–394CrossRefGoogle Scholar
  33. 33.
    Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny (8):180–183.  https://doi.org/10.15199/48.2016.08.49CrossRefGoogle Scholar
  34. 34.
    Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52:802–813.  https://doi.org/10.1134/S2070205116050191CrossRefGoogle Scholar
  35. 35.
    Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756.  https://doi.org/10.1016/j.ceramint.2016.04.095CrossRefGoogle Scholar
  36. 36.
    Keogh DW (2011) Encyclopedia of inorganic and bioinorganic chemistry.  https://doi.org/10.1002/9781119951438
  37. 37.
    Gribaudo L, Arias D, Abriata J (1994) The N-Zr (Nitrogen-Zirconium) System. J Phase Equilibria 15(4):441–449.  https://doi.org/10.1007/BF02647575CrossRefGoogle Scholar
  38. 38.
    Pogrebnjak AD, Bagdasaryan AA, Yakushchenko IV et al (2014) The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev 83(11):1027–1061CrossRefGoogle Scholar
  39. 39.
    Hultman L (2000) Thermal stability of nitride thin films. Vacuum 57(1):1–30.  https://doi.org/10.1016/S0042-207X(00)00143-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • O. V. Maksakova
    • 1
    Email author
  • M. K. Kylyshkanov
    • 2
  • S. Simoẽs
    • 3
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Sarsen Amanzholov East Kazakhstan State UniversityUst-KamenogorskRepublic of Kazakhstan
  3. 3.University of PortoPortoPortugal

Personalised recommendations