Advertisement

AC Dependence of Electrical Properties of SiOx/ZrO2 Multilayer Nanocomposites with Si Nanocrystals

  • T. N. KoltunowiczEmail author
  • K. Czarnacka
  • A. K. Fedotov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The following paper presents the method of obtaining silicon nanocrystals in a matrix of zirconium dioxide and the results of measurements of electrical properties. The tested material was produced by alternating vacuum evaporation with SiOx and ZrO2 and then annealed to obtain silicon nanocrystals. The measurement parameters in the function of temperature and frequency were: capacitance, resistance, the angle of phase shift and tangent of dielectric losses. On this basis, and referring to the dimensions of the sample, conductivity was determined as a function of temperature and frequency. Thanks to this, the mechanism of charge transfer and the nature of the material have been proposed.

Keywords

Nanocomposites Nanocrystals Conductivity Electrical properties 

Notes

Acknowledgements

This research was partially supported by the Polish Ministry of Science and Higher Education as a statute tasks of the Lublin University of Technology, at the Faculty of Electrical Engineering and Computer Science, 8620/E-361/S/2018 (S-28/E/2018), entitled “Researches of electrical, magnetic, thermal and mechanical properties of modern electrotechnical and electronic materials, including nanomaterials and electrical devices and their components, in order to determination of suitability for use in electrical engineering and to increase the efficiency of energy management”.

References

  1. 1.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos B Eng 142:85–94CrossRefGoogle Scholar
  2. 2.
    Kravchenko YO, Coy LE, Peplińska B et al (2018) Nano-multilayered coatings of (TiAlSiY)N/MeN (Me = Mo, Cr and Zr): influence of composition of the alternating layer on their structural and mechanical properties. J Alloy Compd 767:483–495CrossRefGoogle Scholar
  3. 3.
    Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59CrossRefGoogle Scholar
  4. 4.
    Smyrnova KV, Pogrebnjak AD, Beresnev VM et al (2018) Microstructure and physical-mechanical properties of (TiAlSiY)N nanostructured coatings under different energy conditions. Met Mater Int 24(5):1024–1035CrossRefGoogle Scholar
  5. 5.
    Pogrebnjak AD, Beresnev VM (2012) Nanocoatings nanosystems nanotechnologies. Bentham Science, Oak Park.  https://doi.org/10.2174/97816080541691120101Google Scholar
  6. 6.
    Rizal C, Ued Y, Karki BR (2012) Magnetic properties of Fe/Cu Multilayers prepared using pulsed-current electrodeposition. J Nano-Electron Phys 4(1):01001Google Scholar
  7. 7.
    Bondariev V, Zukowski P, Luhin V et al (2017) Thermo-gravimetric analysis of the nanocomposite (FeCoZr)x(CaF2)(100-x). High Temp Mater Process 21(4):289–298.  https://doi.org/10.1615/HighTempMatProc.2018025484CrossRefGoogle Scholar
  8. 8.
    Boiko O (2017) Ferromagnetic alloy—ferroelectric ceramic nanocomposites for nanoelectronics: the influence of a heat treatment on electrical properties. High Temp Mater Process 21(3):251–259.  https://doi.org/10.1615/HighTempMatProc.2018025554CrossRefGoogle Scholar
  9. 9.
    Koltunowicz TN, Zukowski P, Boiko O et al (2015) AC hopping conductance in nanocomposite films with ferromagnetic alloy nanoparticles in a PbZrTiO3 matrix. J Electron Mater 44(7):2260–2268.  https://doi.org/10.1007/s11664-015-3685-9CrossRefGoogle Scholar
  10. 10.
    Yu X, Shen MR (2008) Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application. J Mater Process Technol 202(1–3):301–306.  https://doi.org/10.1016/j.jmatprotec.2007.09.015CrossRefGoogle Scholar
  11. 11.
    Kalinin YE, Ponomarenko AT, Sitnikov AV et al (2001) Granular metal-insulator nanocomposites with an amorphous structure. Fiz Khim Obrab Mater 5:14–20Google Scholar
  12. 12.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048.  https://doi.org/10.1063/1.103561CrossRefGoogle Scholar
  13. 13.
    Choi SH, Elliman RG, Cheylan S et al (2000) Intrinsic defect-related blue-violet and ultraviolet photoluminescence from Si+-implanted fused silica. Appl Phys Lett 76(15):2062–2064.  https://doi.org/10.1063/1.126255CrossRefGoogle Scholar
  14. 14.
    Meng LJ, Dossantos MP (1993) Investigations of titanium-oxide films deposited by DC reactive magnetron sputtering in different sputtering pressures. Thin Solid Films 226(1):22–29.  https://doi.org/10.1016/0040-6090(93)90200-9CrossRefGoogle Scholar
  15. 15.
    Pshyk AV, Coy LE, Yate L et al (2016) Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN-TiB2-TiSi2. Mater Des 94:230–239.  https://doi.org/10.1016/j.matdes.2015.12.174CrossRefGoogle Scholar
  16. 16.
    Ershov AV, Tetelbaum DI, Chugrov IA et al (2011) Annealing-induced evolution of optical properties of the multilayered nanoperiodic SiOx/ZrO2 system containing Si nanoclusters. Semiconductors 45(6):731–737.  https://doi.org/10.1134/S1063782611060108CrossRefGoogle Scholar
  17. 17.
    Kusdianto K, Jiang DP, Kubo M et al (2017) Fabrication of TiO2-Ag nanocomposite thin films via one-step gas-phase deposition. Ceram Int 43(6):5351–5355.  https://doi.org/10.1016/j.ceramint.2017.01.009CrossRefGoogle Scholar
  18. 18.
    Rashidi MJ, Mashkani MA, Khoshrou S et al (2017) Light harvesting applications of ZnFe2O4/NiTiO3 nanocomposite through the two-step sol-gel method. J Mater Sci-Mater Electron 28(15):11393–11400.  https://doi.org/10.1007/s10854-017-6933-3CrossRefGoogle Scholar
  19. 19.
    Mahajan AM, Khairnar AG, Thibeault BJ (2011) Pt-Ti/ALD-Al2O3/p-Si MOS capacitors for future ULSI technology. J Nano-Electron Phys 3(1):647–650Google Scholar
  20. 20.
    Gourbilleau F, Ternon C, Maestre D et al (2009) Silicon-rich SiO2/SiO2 multilayers: a promising material for the third generation of solar cell. J Appl Phys 106(1):013501.  https://doi.org/10.1063/1.3156730CrossRefGoogle Scholar
  21. 21.
    Ershov AV, Chugrov IA, Tetelbaum DI et al (2013) Thermal evolution of the morphology, structure, and optical properties of multilayer nanoperiodic systems produced by the vacuum evaporation of SiO and SiO2. Semiconductors 47(4):481–486.  https://doi.org/10.1134/S1063782613040064CrossRefGoogle Scholar
  22. 22.
    Adamchuck DV, Ksenevich VK, Gorbachuk NI et al (2016) Impedance spectroscopy of polycrystalline tin dioxide films. Devices Methods of Meas 7(3):312–321CrossRefGoogle Scholar
  23. 23.
    Koltunowicz TN, Zukowski P, Czarnacka K et al (2015) Percolation phenomena in nanofilms Cux(SiOy)100-x produced by ion beam-sputtering. Acta Phys Pol A 128(5):908–911.  https://doi.org/10.12693/APhysPolA.128.908CrossRefGoogle Scholar
  24. 24.
    Svito I, Fedotov AK, Koltunowicz TN et al (2014) Hopping of electron transport in granular Cux(SiO2)1-x nanocomposite films deposited by ion-beam sputtering. J Alloy Compd 615(Suppl. 1):S371–S374.  https://doi.org/10.1016/j.jallcom.2014.01.136CrossRefGoogle Scholar
  25. 25.
    Koltunowicz TN, Zukowski P, Czarnacka K et al (2015) Dielectric properties of nanocomposite (Cu)x(SiO2)(100-x) produced by ion-beam sputtering. J Alloy Compd 652:444–449.  https://doi.org/10.1016/j.jallcom.2015.08.240CrossRefGoogle Scholar
  26. 26.
    Mudryi AV, Mofidnahai F, Karotki AV et al (2012) Silicon-germanium nanostructures with germanium quantum dots for optoelectronic applications. Devices Methods Meas 1:44–50Google Scholar
  27. 27.
    Czarnacka K, Komarov FF (2016) The influence of annealing on the electrical and optical properties of silicon-rich silicon nitride films. In: Proceedings of SPIE photonics applications in astronomy, communications, industry, and high-energy physics experiments 2016, Spie-Int Soc Optical Engineering, 2016, p 10031.  https://doi.org/10.1117/12.2249111
  28. 28.
    Koltunowicz TN (2015) Measurement station for frequency dielectric spectroscopy of nanocomposites and semiconductors. J Appl Spectrosc 82(4):653–658.  https://doi.org/10.1007/s10812-015-0158-0CrossRefGoogle Scholar
  29. 29.
    Kołtunowicz TN, Fedotova JA, Zhukowski P et al (2013) Negative capacitance in (FeCoZr)-(PZT) nanocomposite films. J Phys D-Appl Phys 46(12):125304.  https://doi.org/10.1088/0022-3727/46/12/125304CrossRefGoogle Scholar
  30. 30.
    Koltunowicz TN, Zukowski P, Bondariev V et al (2015) Study of dielectric function of (FeCoZr)x(CaF2)(100-x) nanocomposites produced with a beam of argon ions. J Alloy Compd 650:262–267.  https://doi.org/10.1016/j.jallcom.2015.07.276CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • T. N. Koltunowicz
    • 1
    Email author
  • K. Czarnacka
    • 2
  • A. K. Fedotov
    • 3
  1. 1.Department of Electrical Devices and High Voltage TechnologyLublin University of TechnologyLublinPoland
  2. 2.University of Life Sciences in LublinLublinPoland
  3. 3.Belarusian State UniversityMinskBelarus

Personalised recommendations