Mechanisms of Surface State Formation at Si/SiO2 Interface in the Nanosized MOS Transistors

  • A. N. Volkov
  • D. V. AndreevEmail author
  • V. M. Maslovsky
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper demonstrates the main physical mechanisms of the surface state generation at the interface Si/SiO2, which are typical for nanosized MOS transistors. We demonstrate the most common model of the surface state generation. One analyzes graphs showing a dependence of lifetime on substrate current (Isub), which are obtained from the literature. We demonstrate a method to determine charge carrier energy participating in the process of surface state generation and a method to ascertain the mechanism of surface state generation in nanosized MOS transistors. We ascertain main parameters of MOS transistors affecting the process of surface state generation.


Surface states Si/SiO2 interface MOSFET Si–H bonds MOS transistors lifetime 


  1. 1.
    Grasser T (2015) Hot carrier degradation in semiconductor devices. Springer, SwitzerlandCrossRefGoogle Scholar
  2. 2.
    Guerin C, Huard V, Braviax A (2009) General framework about defect creation at the Si/SiO2 interface. J Appl Phys 105:114513CrossRefGoogle Scholar
  3. 3.
    Andreev VV, Bondarenko GG, Maslovsky DV et al (2015) Modification and reduction of defects in thin gate dielectric of MIS devices by injection-thermal and irradiation treatments. Phys Status Solidi C 12(1–2):126–130CrossRefGoogle Scholar
  4. 4.
    Andreev VV, Bondarenko GG, Maslovsky VM et al (2015) Modification of MOS devices by high-field electron injection and arc plasma jet treatment. Acta Phys Pol A 128(5):887–890CrossRefGoogle Scholar
  5. 5.
    Andreev VV, Maslovsky VM, Andreev DV et al (2016) Method of stress and measurement modes for research of thin dielectric films of MIS structures. In: International conference on micro- and nano-electronics, vol 10224. SPIE, Dec 2016, p 1022429Google Scholar
  6. 6.
    Prabhakar M (2002) Characterization and modeling of hot carrier degradation in sub-micron n-MOSFETs. Nashville, TennesseeGoogle Scholar
  7. 7.
    Rafi JM, Campabadal F (2001) Hot-carrier degradation in deep-submicrometer nMOSFET’s: lightly doped drain vs. large angle tilt implanted drain. Solid State Electron 45:1391Google Scholar
  8. 8.
    Cui Z, Liou JJ, Yue Y, Vinson J (2003) Empirical reliability modeling for 0.18-µm MOS devices. Solid State Electron 47:1515–1522CrossRefGoogle Scholar
  9. 9.
    Bravaix A, Guerin C, Goguenheim D et al (2010) Off state incorporation into the 3 energy mode device lifetime modeling for advanced 40 nm CMOS node. In: Proceedings of the IEEE International Reliability Physics Symposium 2010, p 55Google Scholar
  10. 10.
    Guérin C, Huard V, Bravaix A (2007) The energy driven hot-carrier degradation modes in NMOSFETs. IEEE Trans Device Mater Reliability 7(2):225–235CrossRefGoogle Scholar
  11. 11.
    Ivashchenko VI, Pogrebnjak AD, Sobol’ OV et al (2015) The effect of Al target current on the structure and properties of (Nb2Al) N films with an amorphous AlN phase. Tech Phys Lett 41(7):697–700CrossRefGoogle Scholar
  12. 12.
    Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756CrossRefGoogle Scholar
  13. 13.
    Pogrebnjak AD, Bagdasaryan AA, Yakushchenko IV et al (2014) The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev 83(11):1027–1061CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. N. Volkov
    • 1
  • D. V. Andreev
    • 2
    Email author
  • V. M. Maslovsky
    • 3
  1. 1.Research Institute of Physical ProblemsZelenogradRussia
  2. 2.Bauman Moscow State Technical UniversityKalugaRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow RegionRussia

Personalised recommendations