Advertisement

Structural Features and Properties of Biocompatible Ti-Based Alloys with β-Stabilizing Elements

  • K. V. SmyrnovaEmail author
  • Alexander D. Pogrebnjak
  • L. G. Kassenova
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Nowadays titanium-based alloys are widely used in various spheres, such as metallurgy, aerospace, aircraft industries, and medicine. Recent research has demonstrated that proper heat treatment and the addition of elements, stabilizing β phase, the properties of commercially pure (CP) Ti can be successfully modified application as an implant material. The paper discusses the titanium-based alloys containing Ta, Nb, and Zr, their preparation techniques, and the influence of these elements on their microstructure, biocompatibility, mechanical properties, and corrosion resistance. Furthermore, this article examines current information about recent achievements in designing β-type titanium alloys.

Keywords

Biocompatibility Titanium alloys Mechanical properties Superelasticity 

Notes

Acknowledgements

This research was carried out under the aegis of Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the targeted financing program “Targeted scientific and technical program of the D. Serikbayev East Kazakhstan State Technical University, focused on the development of new types of products for fabrication at the leading industrial enterprises of the East Kazakhstan region” for 2017–2019 years, and was supported by the budget program of Ministry of Education and Science of Ukraine “Multilayer and multicomponent coatings with adaptive behavior in wear and friction conditions” (No. 0118U003579).

References

  1. 1.
    Biesiekierski A, Wang J, Abdel-Hady Gepreel M et al (2012) A new look at biomedical Ti-based shape memory alloys. Acta Biomater 8(5):1661–1669.  https://doi.org/10.1016/j.actbio.2012.01.018CrossRefGoogle Scholar
  2. 2.
    Geetha M, Singh AK, Asokamani R et al (2009) Ti-based biomaterials, the ultimate choice for orthopedic implants—a review. Prog Mater Sci 54(3):397–425.  https://doi.org/10.1016/j.pmatsci.2008.06.004CrossRefGoogle Scholar
  3. 3.
    Liu J, Chang L, Liu H, Li Y et al (2017) Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb–Ti–Ta alloys as biomedical material. Mater Sci Eng C Mater Biol Appl 71:512–519.  https://doi.org/10.1016/j.msec.2016.10.043CrossRefGoogle Scholar
  4. 4.
    Hao YL, Yang R, Niinomi M et al (2002) Young’s modulus and mechanical properties of Ti–29Nb–13Ta–4.6Zr about α″ martensite. Metall Mater Trans A 33(10):3137–3144.  https://doi.org/10.1007/s11661-002-0299-7CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Xiu P, Jia Z et al (2018) Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf B 169:366–374.  https://doi.org/10.1016/j.colsurfb.2018.05.044CrossRefGoogle Scholar
  6. 6.
    Chui P (2017) Near β-type Zr–Nb–Ti biomedical alloys with high strength and low modulus. Vacuum 143:54–58.  https://doi.org/10.1016/j.vacuum.2017.05.039CrossRefGoogle Scholar
  7. 7.
    Millis DL (2014) Responses of musculoskeletal tissues to disuse and remobilization. In: Canine rehabilitation and physical therapy, Elsevier, pp 92–153Google Scholar
  8. 8.
    Zheng XH, Sui JH, Zhang X et al (2013) Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scr Mater 68(12):1008–1011.  https://doi.org/10.1016/j.scriptamat.2013.03.008CrossRefGoogle Scholar
  9. 9.
    Geetha M, Kamachi Mudali U, Gogia AK et al (2004) Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros Sci 46(4):877–892.  https://doi.org/10.1016/S0010-938X(03)00186-0CrossRefGoogle Scholar
  10. 10.
    Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surf 52(5):802–813.  https://doi.org/10.1134/S2070205116050191CrossRefGoogle Scholar
  11. 11.
    Kadyrzhanov EY, Zdorovets M, Kozlovskiy AL et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73.  https://doi.org/10.21122/2220-9506-2018-9-1-66-73CrossRefGoogle Scholar
  12. 12.
    Peters M, Hemptenmacher J, Kumpfert J et al (2003) Structure and properties of titanium and titanium alloys. In: Leyens C, Peters M (eds) Titanium and titanium alloys: fundamentals and applications, Wiley-VCH Verlag GmbH & Co, pp 1–36Google Scholar
  13. 13.
    Hao YL, Li SJ, Sun SY et al (2006) Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A 441(1):112–118.  https://doi.org/10.1016/j.msea.2006.09.051CrossRefGoogle Scholar
  14. 14.
    Cojocaru VD, Raducanu D, Gloriant T et al (2012) Structural observation of twinning deformation mechanism in a Ti–Ta–Nb alloy. Solid State Phenom 188:46–51.  https://doi.org/10.4028/www.scientific.net/SSP.188.46CrossRefGoogle Scholar
  15. 15.
    Nie L, Zhan Y, Hu T et al (2014) β-Type Zr–Nb–Ti biomedical materials with high plasticity and low modulus for hard tissue replacements. J Mech Behav Biomed Mater 29:1–6.  https://doi.org/10.1016/j.jmbbm.2013.08.019CrossRefGoogle Scholar
  16. 16.
    Drob SI, Vasilescu C, Drob P et al (2015) Corrosion behaviour of nitrogen-implantation Ti–Ta–Nb alloy in physiological solutions simulating real conditions from human body. JOM 67:818–829.  https://doi.org/10.1007/s11837-015-1351-6CrossRefGoogle Scholar
  17. 17.
    Raducanu D, Vasilescu E, Cojocaru VD et al (2011) Mechanical and corrosion resistance of a new nanostructured Ti–Zr–Ta–Nb alloy. J Mech Behav Biomed Mater 4:1421–1430.  https://doi.org/10.1016/j.jmbbm.2011.05.012CrossRefGoogle Scholar
  18. 18.
    Hussein AH, Gepreel MAH, Gouda MK et al (2016) Biocompatibility of new Ti–Nb–Ta base alloys. Mater Sci Eng C 61:574–578.  https://doi.org/10.1016/j.msec.2015.12.071CrossRefGoogle Scholar
  19. 19.
    Berladir KV, Budnik OA, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a review. High Temp Mater Process Int Q High Technol Plasma Process 20(2):157–184.  https://doi.org/10.1615/HighTempMatProc.2016017875CrossRefGoogle Scholar
  20. 20.
    Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100–x). Ceram Int 43(2):2511–2516.  https://doi.org/10.1016/j.ceramint.2016.11.052CrossRefGoogle Scholar
  21. 21.
    Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92.  https://doi.org/10.1016/j.tsf.2015.02.013CrossRefGoogle Scholar
  22. 22.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B 86(1):14110.  https://doi.org/10.1103/PhysRevB.86.014110CrossRefGoogle Scholar
  23. 23.
    Kasiuk V, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloy Compd 586:S432–S435.  https://doi.org/10.1016/j.jallcom.2012.09.058CrossRefGoogle Scholar
  24. 24.
    Knight R, Smith RW, Apelian D (1991) Application of plasma arc melting technology to the processing of reactive metals. Int Mater Rev 36(1):221–252.  https://doi.org/10.1179/imr.1991.36.1.221CrossRefGoogle Scholar
  25. 25.
    Cremasco A, Messias A, Esposito A et al (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31:833–839.  https://doi.org/10.1016/j.msec.2010.12.013CrossRefGoogle Scholar
  26. 26.
    Oliveira NTC, Aleixo G, Caram R et al (2007) Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng A 452–453:727–731.  https://doi.org/10.1016/j.msea.2006.11.061CrossRefGoogle Scholar
  27. 27.
    Bertrand E, Gloriant T, Gordin DM et al (2010) Synthesis and characterization of a new superelastic Ti–25Ta–25Nb biomedical alloy. J Mech Behav Biomed Mater 3(8):559–564.  https://doi.org/10.1016/j.jmbbm.2010.06.007CrossRefGoogle Scholar
  28. 28.
    Hagihara K, Nakano T (2017) Experimental clarification of the cyclic deformation mechanisms of β-type Ti–Nb–Ta–Zr-alloy single crystals developed for the single-crystalline implant. Int J Plast 98:27–44.  https://doi.org/10.1016/j.ijplas.2017.06.006CrossRefGoogle Scholar
  29. 29.
    Karre R, Niranjan MK, Dey SR (2015) First-principles theoretical investigations of low Young’s modulus beta Ti–Nb and Ti–Nb–Zr alloys compositions for biomedical applications. Mater Sci Eng C 50:52–58.  https://doi.org/10.1016/j.msec.2015.01.061CrossRefGoogle Scholar
  30. 30.
    Liu J, Chang L, Liu H et al (2017) Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb–Ti–Ta alloys as a biomedical material. Mater Sci Eng C 71:512–519.  https://doi.org/10.1016/j.msec.2016.10.043CrossRefGoogle Scholar
  31. 31.
    Liu J, Ruan J, Chang L et al (2017) Porous Nb–Ti–Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater Sci Eng C 78:503–512.  https://doi.org/10.1016/j.msec.2017.04.088CrossRefGoogle Scholar
  32. 32.
    Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60.  https://doi.org/10.1179/1743280411Y.0000000011CrossRefGoogle Scholar
  33. 33.
    Warnke PH, Douglas T, Wollny P et al (2008) Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C Methods 15(2):115–124.  https://doi.org/10.1089/ten.tec.2008.0288CrossRefGoogle Scholar
  34. 34.
    Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys Usp 55(3):270–300.  https://doi.org/10.3367/UFNe.0182.201203d.0287CrossRefGoogle Scholar
  35. 35.
    Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings. J Nanomater 2013:1–12.  https://doi.org/10.1155/2013/780125CrossRefGoogle Scholar
  36. 36.
    Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318.  https://doi.org/10.1016/j.matlet.2017.09.121CrossRefGoogle Scholar
  37. 37.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94.  https://doi.org/10.1016/j.compositesb.2018.01.004CrossRefGoogle Scholar
  38. 38.
    Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb–Si–N films: Experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756.  https://doi.org/10.1016/j.ceramint.2016.04.095CrossRefGoogle Scholar
  39. 39.
    Alliston T, Chang J (2011) TGFβ and Runx2 calibration of bone extracellular matrix quality for tissue-specific function. IBMS Bonekey 8(8):370–380.  https://doi.org/10.1138/20110525 CrossRefGoogle Scholar
  40. 40.
    Li Y, Yang C, Zhao H et al (2014) New developments of Ti-based alloys for biomedical applications. Materials 7(3):1709–1800.  https://doi.org/10.3390/ma7031709CrossRefGoogle Scholar
  41. 41.
    Lai Y-S, Chen W-C, Huang C-H et al (2015) The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction. PLoS One 10(5):e0127293.  https://doi.org/10.1371/journal.pone.0127293CrossRefGoogle Scholar
  42. 42.
    Dumitrescu C, Rǎducanu D, Cojocaru VD et al (2011) Investigation of mechanical properties for A Ti–Ta–Nb alloy. UPB Sci Bull Ser B Chem Mater Sci 73:221–230Google Scholar
  43. 43.
    Tang X, Ahmed T, Rack HJ (2000) Phase transformations in Ti–Nb–Ta and Ti–Nb–Ta–Zr alloys. J Mater Sci 25:1805–1811.  https://doi.org/10.1023/A:1004792922155CrossRefGoogle Scholar
  44. 44.
    Mohammed MT, Khan ZA, Siddiquee AN (2014) Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int J Mater Metall Eng 8(8):822–827Google Scholar
  45. 45.
    Stráský J, Harcuba P, Václavová K et al (2017) Increasing strength of a biomedical Ti–Nb–Ta–Zr alloy by alloying with Fe, Si and O. J Mech Behav Biomed Mater 71:329–336.  https://doi.org/10.1016/j.jmbbm.2017.03.026CrossRefGoogle Scholar
  46. 46.
    He G, Hagiwara M (2006) Ti alloy design strategy for biomedical applications. Mater Sci Eng C 26(1):14–19.  https://doi.org/10.1016/j.msec.2005.03.007CrossRefGoogle Scholar
  47. 47.
    Ozan S, Lin J, Li Y et al (2017) New Ti–Ta–Zr–Nb alloys with ultrahigh strength for potential orthopedic implant applications. J Mech Behav Biomed Mater 75:119–127.  https://doi.org/10.1016/j.jmbbm.2017.07.011CrossRefGoogle Scholar
  48. 48.
    Williams D (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953.  https://doi.org/10.1016/j.biomaterials.2008.04.023CrossRefGoogle Scholar
  49. 49.
    Stenlund P, Omar O, Brohede U et al (2015) Bone response to a novel Ti–Ta–Nb–Zr alloy. Acta Biomater 20:165–175.  https://doi.org/10.1016/j.actbio.2015.03.038CrossRefGoogle Scholar
  50. 50.
    Schwalfenberg GK (2012) The alkaline diet: Is there evidence that an alkaline pH diet benefits health? J Environ Public Health 2012:727630.  https://doi.org/10.1155/2012/727630CrossRefGoogle Scholar
  51. 51.
    Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59.  https://doi.org/10.1016/j.matdes.2018.05.001CrossRefGoogle Scholar
  52. 52.
    Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196.  https://doi.org/10.1016/j.matchar.2018.03.048CrossRefGoogle Scholar
  53. 53.
    Pogrebnyak AD, Shpak A, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52(1):29–54.  https://doi.org/10.3367/UFNe.0179.200901b.0035CrossRefGoogle Scholar
  54. 54.
    Kapoor K, Kain V, Gopalkrishna T et al (2003) High corrosion resistant Ti-5% Ta-1.8% Nb alloy for fuel reprocessing application. J Nucl Mater 322:36–44.  https://doi.org/10.1016/S0022-3115(03)00302-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. V. Smyrnova
    • 1
    Email author
  • Alexander D. Pogrebnjak
    • 1
  • L. G. Kassenova
    • 2
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.The Kazakh University of Economics, Finance and International TradeAstanaRepublic of Kazakhstan

Personalised recommendations