Advertisement

Multilayer Design of CrN/MoN Superhard Protective Coatings and Their Characterisation

  • B. O. PostolnyiEmail author
  • O. V. Bondar
  • K. Zaleski
  • E. Coy
  • S. Jurga
  • L. Rebouta
  • J. P. Araujo
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Multilayer CrN/MoN transition metal nitride coatings were studied in this research. Films were deposited by vacuum arc deposition (Arc-PVD) from Cr and Mo cathodes in nitrogen atmosphere pN = 0.4 Pa. Three series of samples with different values of negative bias voltage (−20, −150, and −300 V) applied to the surface were fabricated. Each series has samples with 11, 22, 44, 88, 180 and 354 layers while total thickness was maintained with the same value. Samples were studied by scanning electron microscopy (SEM) on cross-sections and coatings surface, energy-dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), micro-indentation. Two main cubic phases of γ-Mo2N and cubic CrN were detected. It was observed that the crystal growth orientation changes while the negative bias voltage of the substrate decreases. The maximum values of hardness (38–42 GPa) among the studied samples were obtained for coatings with a minimal individual layer thickness of 20 nm deposited at Ub = −20 V.

Keywords

Multilayers Microstructure Diffraction Hardness Coatings 

Notes

Acknowledgements

This work was partly financed by the Foundation of Science and Technology (FCT) of Portugal [references NORTE-01-0145-FEDER-022096, SFRH/BD/129614/2017], Network of Extreme Conditions Laboratories (NECL) and by Ukrainian state budget programs [No. 0116U006816, 0118U003579 and 0116U002621]. Partial support by COST Action CA15102 is also greatly appreciated. The authors are very thankful to Prof. Alexander Pogrebnjak from Sumy State University and Prof. Vyacheslav Beresnev from V. N. Karazin National University in Ukraine for their support and help.

References

  1. 1.
    Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Physics-Uspekhi 55(3):270–300. https://doi.org/10.3367/UFNe.0182.201203d.0287Google Scholar
  2. 2.
    Pogrebnjak AD, Bondar O V., Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756.  https://doi.org/10.1016/j.ceramint.2016.04.095Google Scholar
  3. 3.
    Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 63(4): 483–486. https://doi.org/10.1016/S0042-207X(01)00225-1Google Scholar
  4. 4.
    Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. https://doi.org/10.1016/S0042-207X(01)00160-9Google Scholar
  5. 5.
    Boiko O, Koltunowicz TN, Zukowski P et al. (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100 − x). Ceram Int 43(2):2511–2516. https://doi.org/10.1016/j.ceramint.2016.11.052Google Scholar
  6. 6.
    Li Z, Ludwig A, Savan A et al (2018) Combinatorial metallurgical synthesis and processing of high-entropy alloys. J Mater Res, 1–14.  https://doi.org/10.1557/jmr.2018.214Google Scholar
  7. 7.
    Matizamhuka W (2016) Structure-properties relationships. Microstructure-property correlations for hard, superhard, and ultrahard materials. Springer International Publishing, Cham, pp 75–103.  https://doi.org/10.1007/978-3-319-29291-5_3Google Scholar
  8. 8.
    Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125(1–3):322–330.  https://doi.org/10.1016/S0257-8972(99)00586-1Google Scholar
  9. 9.
    Postolnyi BO, Beresnev VM, Abadias G et al (2017) Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness. J Alloys Compd 725:1188–1198.  https://doi.org/10.1016/j.jallcom.2017.07.010Google Scholar
  10. 10.
    Kumar CS, Patel SK (2018) Application of surface modification techniques during hard turning: Present work and future prospects. Int J Refract Met Hard Mater 76:112–127.  https://doi.org/10.1016/j.ijrmhm.2018.06.003Google Scholar
  11. 11.
    Pogrebnjak AD, Bagdasaryan AA, Yakushchenko I V et al (2014) The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev 83(11):1027–1061.  https://doi.org/10.1070/RCR4407Google Scholar
  12. 12.
    Pogrebnjak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Physics-Uspekhi 52(1): 29–54. https://doi.org/10.3367/UFNe.0179.200901b.0035Google Scholar
  13. 13.
    Ferreira F, Aijaz A, Kubart T et al (2018) Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering. Surf Coat Technol 336:92–98.  https://doi.org/10.1016/j.surfcoat.2017.10.055Google Scholar
  14. 14.
    Schalk N, Simonet Fotso JFT, Holec D et al (2016) Influence of varying nitrogen partial pressures on microstructure, mechanical and optical properties of sputtered TiAlON coatings. Acta Mater 119:26–34.  https://doi.org/10.1016/j.actamat.2016.08.007Google Scholar
  15. 15.
    Klimashin FF, Mayrhofer PH (2017) Ab initio-guided development of super-hard Mo–Al–Cr–N coatings. Scr Mater 140:27–30.  https://doi.org/10.1016/j.scriptamat.2017.06.052Google Scholar
  16. 16.
    Mourlas A, Psyllaki P, Chaliampalias D et al (2016) Tribological behaviour of gradient TiAlSiN superhard coatings. Key Eng Mater 674:207–212.  https://doi.org/10.4028/www.scientific.net/KEM.674.207Google Scholar
  17. 17.
    Pogrebnjak AD, Bondar OV, Abadias G et al. (2015) Investigation of nanoscale TiN/MoN multilayered systems, fabricated using arc evaporation. Acta Phys Pol A 128(5):836–841.  https://doi.org/10.12693/APhysPolA.128.836Google Scholar
  18. 18.
    Musil J, Jirout M (2007) Toughness of hard nanostructured ceramic thin films. Surf Coat Technol 201(9–11 SPEC. ISS.):5148–5152.  https://doi.org/10.1016/j.surfcoat.2006.07.020Google Scholar
  19. 19.
    Veprek S, Veprek-Heijman MGJ, Karvankova P et al (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29.  https://doi.org/10.1016/j.tsf.2004.10.053Google Scholar
  20. 20.
    Mironov V, Kolbe M, Lapkovskis V et al (2014) Application of pulse electromagnetic field for metal coatings manufacturing. Key Eng Mater 604:269–272.  https://doi.org/10.4028/www.scientific.net/KEM.604.269Google Scholar
  21. 21.
    Chayeuski VV, Zhylinski VV, Rudak PV et al (2018) Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool. Appl Surf Sci 446:18–26.  https://doi.org/10.1016/j.apsusc.2018.02.239Google Scholar
  22. 22.
    Abadias G, Daniliuk AY, Solodukhin IA et al (2018) Thermal stability of TiZrAlN and TiZrSiN films formed by reactive magnetron sputtering. Inorg Mater Appl Res 9(3):418–426.  https://doi.org/10.1134/S2075113318030024Google Scholar
  23. 23.
    Abadias G, Chason E, Keckes J et al (2018) Review article: stress in thin films and coatings: current status, challenges, and prospects. J Vac Sci Technol A Vac Surf Film 36(2):020801.  https://doi.org/10.1116/1.5011790Google Scholar
  24. 24.
    Fernandes F, Danek M, Polcar T et al (2018) Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure. Tribol Int 119:345–353.  https://doi.org/10.1016/j.triboint.2017.11.008Google Scholar
  25. 25.
    Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surf 52(5):802–813.  https://doi.org/10.1134/S2070205116050191Google Scholar
  26. 26.
    Bondar O V., Postol’nyi BA, Beresnev VM et al (2015) Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J Superhard Mater 37(1):27–38.  https://doi.org/10.3103/S1063457615010050Google Scholar
  27. 27.
    Pogrebnjak AD, Isakov IF, Opekunov MS et al (1987) Increased wear resistance and positron annihilation in Cu exposed to high power ion beam. Phys Lett A 123(8)Google Scholar
  28. 28.
    Koltunowicz TN, Zukowski P, Bondariev V et al (2015) The effect of annealing on induction like properties of (FeCoZr)x(CaF 2)(100−x) nanocomposite films produced by ion-beam sputtering in the vacuum environment. Vacuum 120:44–50. https://doi.org/10.1016/j.vacuum.2015.01.030Google Scholar
  29. 29.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B 86(1):014110.  https://doi.org/10.1103/PhysRevB.86.014110
  30. 30.
    Kadyrzhanov DB, Zdorovets M, Kozlovskiy AL et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Devices Methods Meas 9(1):66–73.  https://doi.org/10.21122/2220-9506-2018-9-1-66-73Google Scholar
  31. 31.
    Zhang YJ, Qin YG, Qing YA et al. (2018) TiCuN solid solution coating: excellent wear-resistant biocompatible material to protect artificial joint. Mater Lett 227:145–148.  https://doi.org/10.1016/j.matlet.2018.05.061Google Scholar
  32. 32.
    Johansson K, Riekehr L, Fritze S et al. (2018) Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition. Surf Coat Technol 349:529–539.  https://doi.org/10.1016/j.surfcoat.2018.06.030Google Scholar
  33. 33.
    van Hove RP, Sierevelt IN, van Royen BJ et al. (2015) Titanium-nitride coating of orthopaedic implants: a review of the literature. Biomed Res Int 2015:1–9.  https://doi.org/10.1155/2015/485975Google Scholar
  34. 34.
    Dobrozhan O, Kurbatov D, Danilchenko P et al (2018) Nanostructured ZnO, Cu2ZnSnS4, Cd1−xZnxTe thin films obtained by spray pyrolysis method. In: Semiconductors—growth and characterization (InTech). https://doi.org/10.5772/intechopen.72988Google Scholar
  35. 35.
    Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys Pol A 123(5):816–818.  https://doi.org/10.12693/APhysPolA.123.816Google Scholar
  36. 36.
    Pogrebnjak AD, Postol’nyi BA, Kravchenko YA et al (2015) Structure and properties of (Zr-Ti-Cr-Nb)N multielement superhard coatings. J Superhard Mater 37(2):101–111.  https://doi.org/10.3103/S1063457615020045Google Scholar
  37. 37.
    Postolnyi BO, Konarski P, Komarov FF et al (2014) Study of elemental and structural phase composition of multilayer nanostructured TiN/MoN coatings, their physical and mechanical properties. J Nano-Electron Phys 6(4):04016Google Scholar
  38. 38.
    Bondar OV, Postolnyi BO, Kravchenko YA et al (2015) Fabrication and research of superhard (Zr-Ti-Cr-Nb)N coatings. Acta Phys Pol A 128(5):867–871.  https://doi.org/10.12693/APhysPolA.128.867Google Scholar
  39. 39.
    Pogrebnyak AD, Kylyshkanov MK, Tyurin YN et al (2012) Properties and structure of oxidized coatings deposited onto Al-Cu and Al-Mg alloys. Tech Phys 57(6):840–848.  https://doi.org/10.1134/S1063784212060217Google Scholar
  40. 40.
    Postolnyi B, Bondar O, Opielak M et al (2016) Structural analysis of multilayer metal nitride films CrN/MoN using electron backscatter diffraction (EBSD). In: Vladescu M, Tamas R, Cristea I (eds) Proceedings of SPIE—the international society for optical engineering, p 100100E.  https://doi.org/10.1117/12.2243279
  41. 41.
    Shishkin A, Hussainova I, Kozlov V et al. (2018) Metal-coated cenospheres obtained via magnetron sputter coating: a new precursor for syntactic foams. JOM 70(7):1319–1325.  https://doi.org/10.1007/s11837-018-2886-0Google Scholar
  42. 42.
    Pogrebnjak AD, Bagdasaryan AA, Pshyk A et al (2017) Adaptive multicomponent nanocomposite coatings in surface engineering. Physics-Uspekhi 60(6):586–607.  https://doi.org/10.3367/UFNe.2016.12.038018Google Scholar
  43. 43.
    European Commission (2018) Report on critical raw materials and the circular economyGoogle Scholar
  44. 44.
    Grilli M, Bellezze T, Gamsjäger E et al (2017) Solutions for critical raw materials under extreme conditions: a review. Materials (Basel) 10(3):285.  https://doi.org/10.3390/ma10030285Google Scholar
  45. 45.
    Blengini GA, Nuss P, Dewulf J et al (2017) EU methodology for critical raw materials assessment: policy needs and proposed solutions for incremental improvements. Resour Policy 53:12–19.  https://doi.org/10.1016/j.resourpol.2017.05.008Google Scholar
  46. 46.
    Gaustad G, Krystofik M, Bustamante M et al (2018) Circular economy strategies for mitigating critical material supply issues. Resour Conserv Recycl 135:24–33.  https://doi.org/10.1016/j.resconrec.2017.08.002Google Scholar
  47. 47.
    Veprek S (2013) Recent search for new superhard materials: go nano! J Vac Sci Technol A Vac Surf Film 31(5):050822.  https://doi.org/10.1116/1.4818590Google Scholar
  48. 48.
    Silva HG, Pereira AM, Teixeira JM et al (2010) Magnetic field strength and orientation effects on Co-Fe discontinuous multilayers close to percolation. Phys Rev B 82(14):144432.  https://doi.org/10.1103/PhysRevB.82.144432
  49. 49.
    Romano Brandt L, Salvati E, Papadaki C et al (2017) Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy. Surf Coat Technol 320:158–167.  https://doi.org/10.1016/j.surfcoat.2017.01.065Google Scholar
  50. 50.
    Chen W, Lin Y, Zheng J et al. (2015) Preparation and characterization of CrAlN/TiAlSiN nano-multilayers by cathodic vacuum arc. Surf Coatings Technol 265:205–211.  https://doi.org/10.1016/j.surfcoat.2015.01.023Google Scholar
  51. 51.
    Wang H, Zeng H, Li Q et al (2016) Superlattice super toughness of TiN/MN (M = V, Nb, Ta, Mo, and W): first-principles study. Thin Solid Films 607:59–66. https://doi.org/10.1016/j.tsf.2016.03.061Google Scholar
  52. 52.
    Li W, Zheng K, Liu P et al (2016) Microstructure and super hardness effect of CrAlN/SiO 2 nanomultilayered film synthesized by reactive magnetron sputtering. Mater Charact 118:79–84.  https://doi.org/10.1016/j.matchar.2016.05.016Google Scholar
  53. 53.
    Badiger PV, Desai V, Ramesh MR (2017) Development and characterization of Ti/TiC/TiN coatings by cathodic arc evaporation technique. Trans Indian Inst Met 70(9):2459–2464.  https://doi.org/10.1007/s12666-017-1107-9Google Scholar
  54. 54.
    Lei Z, Zhang Q, Zhu X et al (2018) Corrosion performance of ZrN/ZrO2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating. Appl Surf Sci 431:170–176.  https://doi.org/10.1016/j.apsusc.2017.06.273Google Scholar
  55. 55.
    Seidl WM, Bartosik M, Kolozsvári S et al (2018) Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surf Coat Technol 347:427–433.  https://doi.org/10.1016/j.surfcoat.2018.05.025Google Scholar
  56. 56.
    Caicedo JC, Amaya C, Yate L et al (2010) Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system. Mater Sci Eng B 171(1–3):56–61.  https://doi.org/10.1016/j.mseb.2010.03.069Google Scholar
  57. 57.
    Uglov VV, Abadias G, Zlotski SV et al (2018) Blister formation in ZrN/SiN multilayers after He irradiation. Surf Coat Technol 344:170–176.  https://doi.org/10.1016/j.surfcoat.2018.02.095Google Scholar
  58. 58.
    Vilarinho PM, Mahajan A, Sterianou I et al (2012) Layered composite thick films for dielectric applications. J Eur Ceram Soc 32(16):4319–4326.  https://doi.org/10.1016/j.jeurceramsoc.2012.05.026Google Scholar
  59. 59.
    Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites. Thin Solid Films 578:83–92.  https://doi.org/10.1016/j.tsf.2015.02.013Google Scholar
  60. 60.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2014) First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films 564:284–293.  https://doi.org/10.1016/j.tsf.2014.05.036Google Scholar
  61. 61.
    Fernandes F, Morgiel J, Polcar T et al (2015) Oxidation and diffusion processes during annealing of TiSi(V)N films. Surf Coat Technol 275:120–126.  https://doi.org/10.1016/j.surfcoat.2015.05.031Google Scholar
  62. 62.
    Matlak J, Rismaniyazdi E, Komvopoulos K (2018) Nanostructure, structural stability, and diffusion characteristics of layered coatings for heat-assisted magnetic recording head media. Sci Rep 8(1):9807.  https://doi.org/10.1038/s41598-018-27688-4
  63. 63.
    Kelly PJ, Li H, Benson PS et al (2010) Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings. Surf Coat Technol 205(5):1606–1610.  https://doi.org/10.1016/j.surfcoat.2010.07.029Google Scholar
  64. 64.
    Daniel R, Meindlhumer M, Baumegger W et al (2017) Grain boundary design of thin films: using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater 122:130–137.  https://doi.org/10.1016/j.actamat.2016.09.027Google Scholar
  65. 65.
    Polcar T, Martinez R, Vítů T et al (2009) High temperature tribology of CrN and multilayered Cr/CrN coatings. Surf Coat Technol 203(20–21):3254–3259.  https://doi.org/10.1016/j.surfcoat.2009.04.005Google Scholar
  66. 66.
    Nouveau C, Djouadi M., Decès-Petit C et al (2001) Influence of CrxNy coatings deposited by magnetron sputtering on tool service life in wood processing. Surf Coat Technol 142–144:94–101. https://doi.org/10.1016/S0257-8972(01)01092-1Google Scholar
  67. 67.
    Milošev I, Strehblow H-H, Navinšek B (1997) Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films 303(1–2):246–254.  https://doi.org/10.1016/S0040-6090(97)00069-2Google Scholar
  68. 68.
    Wang Y, Chen Y, Zhao D et al (2018) Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions. Appl Surf Sci 447:100–106.  https://doi.org/10.1016/j.apsusc.2018.03.213Google Scholar
  69. 69.
    Subramanian B, Muraleedharan CV, Ananthakumar R et al (2011) A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf Coat Technol 205(21–22):5014–5020.  https://doi.org/10.1016/j.surfcoat.2011.05.004Google Scholar
  70. 70.
    Chim YC, Ding XZ, Zeng XT et al (2009) Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 517(17):4845–4849.  https://doi.org/10.1016/j.tsf.2009.03.038Google Scholar
  71. 71.
    Musil J, Jaroš M, Kos Š et al (2018) Hard TiN2 dinitride films prepared by magnetron sputtering. J Vac Sci Technol A 36(4):040602. https://doi.org/10.1116/1.5038555Google Scholar
  72. 72.
    Jauberteau I, Bessaudou A, Mayet R et al (2015) Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical, and some other properties. Coatings 5(4):656–687.  https://doi.org/10.3390/coatings5040656Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • B. O. Postolnyi
    • 1
    • 2
    Email author
  • O. V. Bondar
    • 1
  • K. Zaleski
    • 3
  • E. Coy
    • 3
  • S. Jurga
    • 3
  • L. Rebouta
    • 4
  • J. P. Araujo
    • 2
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.IFIMUP-IN, Department of Physics and AstronomyFaculty of Sciences, University of PortoPortoPortugal
  3. 3.NanoBioMedical Centre, Adam Mickiewicz UniversityPoznańPoland
  4. 4.Centre of Physics, University of MinhoGuimarãesPortugal

Personalised recommendations