Advertisement

Nanostructures in Welded Joints and Their Interconnection with Operation Properties

  • Liudmyla Markashova
  • Olena BerdnikovaEmail author
  • Tetiana Alekseienko
  • Artemii Bernatskyi
  • Volodymyr Sydorets
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The role of structural factors in ensuring optimal properties of materials and their operational reliability has been shown. Studying the phase composition and nanostructures in the welded joints (heat-affected zone, weld metal) of high-strength structural steel produced by advanced high-speed technologies hybrid laser-arc welding. Structural parameters (dimension of grains and subgrains, dislocation density, nanoparticles) and phase changes in the welded joints were studied by using of analytical scanning electron microscopy, optical metallography, and for fine study the transmission electron microscopy was used as well. The most influential structural factors are the dispersing of martensite structure and bainite substructure, equable distribution of particles of structural phases and the absence of extended dislocation clusters—zones of crack incipience and propagation. Such substructure of welding joints of high-strength structural steel produced by laser-arc welding provides the high complex of strength properties and crack resistance.

Keywords

Hybrid laser-arc welding High-strength structural steel Welded joint Microstructure Nanoparticles Dislocation density Mechanical properties Local inner stresses 

References

  1. 1.
    Kovacs T (2018) Laser welding process specification base on welding theories. Proc Manufact 22:147–153.  https://doi.org/10.1016/j.promfg.2018.03.023CrossRefGoogle Scholar
  2. 2.
    Auwal ST, Ramesh S, Yusof F et al (2018) A review on laser beam welding of copper alloys. Int J Adv Manuf Tech 96(1–4):475–490.  https://doi.org/10.1007/s00170-017-1566-5CrossRefGoogle Scholar
  3. 3.
    Katayama S (2013) Handbook of laser welding technologies. Woodhead Publishing Limited, Cambridge.  https://doi.org/10.1533/9780857098771.backmatter
  4. 4.
    Markashova L, Berdnikova O, Bernatskyi A et al (2017) Physical and mechanical properties of high-strength steel joints produced by laser welding. In: Young scientists forum on applied physics and engineering (YSF), IEEE International, p 88–91.  https://doi.org/10.1109/YSF.2017.8126596
  5. 5.
    Unt A, Poutiainen I, Grünenwald S et al (2017) High power fiber laser welding of single sided T-joint on shipbuilding steel with different processing setups. Appl Sci 7(12):1276.  https://doi.org/10.3390/app7121276CrossRefGoogle Scholar
  6. 6.
    Reisgen U, Krivtsun I, Gerhards BA et al (2016) Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam. J Laser Appl 28(2):022402.  https://doi.org/10.2351/1.4944096CrossRefGoogle Scholar
  7. 7.
    Shelyagin VD, Krivtsun IV, Borisov YuS et al (2005) Laser-arc and laser-plasma welding and coating technologies. Avtom Svarka 8:49–54Google Scholar
  8. 8.
    Kesse MA, Gyasi EA, Kah P (2017) Usability of laser-TIG hybrid welding processes. In: The 27th international ocean and polar engineering conference, International Society of Offshore and Polar Engineers, pp 42–49Google Scholar
  9. 9.
    Bunaziv I, Akselsen OM, Salminen A, Unt A (2016) Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy. J Mat Proc Techn 233:107–114.  https://doi.org/10.1016/j.jmatprotec.2016.02.018CrossRefGoogle Scholar
  10. 10.
    Berdnikova O, Poznyakov V, Bushma O (2016) Laser and hybrid laser-arc welding of high strength steel N-A-XTRA-70. Mat Sci Forum 870:630–635.  https://doi.org/10.4028/www.scientific.net/MSF.870.630CrossRefGoogle Scholar
  11. 11.
    Murzin SP, Liedl G (2017) Laser welding of dissimilar metallic materials with use of diffractive optical elements. Comput Opt 41(6):848–855.  https://doi.org/10.18287/2412-6179-2017-41-6-848-855CrossRefGoogle Scholar
  12. 12.
    Cherepanov AN, Mali VI, Maliutina IN et al (2017) Laser welding of stainless steel to titanium using explosively welded composite inserts. Int J Adv Manuf Technol 90(9–12):3037–3043.  https://doi.org/10.1007/s00170-016-9657-2CrossRefGoogle Scholar
  13. 13.
    Siora OV, Bernatsky AV (2011) Development of basic processing methods of laser welding of joints of dissimilar metals. Metallofiz Noveishie Tekhnol 33:569–576Google Scholar
  14. 14.
    Farrokhi F, Siltanen J, Salminen A (2015) Fiber laser welding of direct-quenched ultrahigh strength steels: evaluation of hardness, tensile strength, and toughness properties at subzero temperatures. J Manuf Sci Eng 137(6):061012.  https://doi.org/10.1115/1.4030177CrossRefGoogle Scholar
  15. 15.
    Berdnikova O, Sydorets V, Alekseienko T (2014) Structure and properties of laser-welded joints from high-strength steels. Appl Mech Mat 682:240–245.  https://doi.org/10.4028/www.scientific.net/AMM.682.240CrossRefGoogle Scholar
  16. 16.
    Sokolov M, Salminen A, Khlusova E et al (2015) Testing of new materials and computer aided optimization of laser beam welding of high-strength steels. Phys Proc 78:255–264.  https://doi.org/10.1016/j.phpro.2015.11.036CrossRefGoogle Scholar
  17. 17.
    Kurc-Lisiecka A, Lisiecki A (2017) Laser welding of the new grade of advanced high-strength steel DOMEX 960. Mater Tehnol 51(7):199–204.  https://doi.org/10.17222/mit.2015.158CrossRefGoogle Scholar
  18. 18.
    Cao X, Wanjara P, Huang J et al (2011) Hybrid fiber laser-arc welding of thick section high strength low alloy steel. Mater Des 32(6):3399–3413.  https://doi.org/10.1016/j.matdes.2011.02.002CrossRefGoogle Scholar
  19. 19.
    Rossini M, Spena P, Cortese L et al (2015) Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry. Mat Sci Eng: A 628:288–296.  https://doi.org/10.1016/j.msea.2015.01.037CrossRefGoogle Scholar
  20. 20.
    Krivtsun I, Reisgen U, Semenov O et al (2016) Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG + CO2-laser) welding. J Laser Appl 28(2):022406.  https://doi.org/10.2351/1.4943994CrossRefGoogle Scholar
  21. 21.
    Rethmeier M, Gook S, Lammers M et al (2009) Laser-hybrid welding of thick plates up to 32 mm using a 20 kW fibre laser. Trans JWRI 27(2):74–79.  https://doi.org/10.2207/qjjws.27.74sCrossRefGoogle Scholar
  22. 22.
    Semenov I, Krivtsun I, Reisgen U (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J Phys D: Appl Phys 49(10):105204.  https://doi.org/10.1088/0022-3727/49/10/105204CrossRefGoogle Scholar
  23. 23.
    Orowan E (1954) Dislocation in Metals. AIME, New YorkGoogle Scholar
  24. 24.
    Gol’dshtein MI, Litvinov VS, Bronfin BM (1986) Metallophysics of high-strength alloys. Metallurgiya, MoscowGoogle Scholar
  25. 25.
    Conrad H (1973) Model of strain hardening for explaining the influence of grain size on the stress of metal flow. In: Gordienko LK (ed) Ultrafine grain in metals. Metallurgiya, Moscow, pp 206–219Google Scholar
  26. 26.
    Petch NJ (1953) The cleavage strength of polycrystalline. J Iron Steel Inst 173(5):25–28Google Scholar
  27. 27.
    Panin VE, Likhachev VA, Grinyaeva YuV (1985) Structural levels of deformation of solids. Nauka, NovosibirskGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Liudmyla Markashova
    • 1
  • Olena Berdnikova
    • 1
    Email author
  • Tetiana Alekseienko
    • 1
  • Artemii Bernatskyi
    • 1
  • Volodymyr Sydorets
    • 1
  1. 1.E.O. Paton Electric Welding Institute of the National Academy of Sciences of UkraineKievUkraine

Personalised recommendations