Diagnosis, Intervention, and Prevention of Genetic Hearing Loss

  • Tao Yang
  • Luo Guo
  • Longhao Wang
  • Xiaoyu Yu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1130)


It is estimated that at least 50% of congenital or childhood hearing loss is attributable to genetic causes. In non-syndromic hearing loss, which accounts for 70% of genetic hearing loss, approximately 80% of cases are autosomal recessive, 15% autosomal dominant, and 1–2% mitochondrial or X-linked. In addition, 30% of genetic hearing loss is syndromic. The genetic causes of hearing loss are highly heterogeneous. So far, more than 140 deafness-related genes have been discovered. Studies on those genes tremendously increased our understanding of the inner ear functions at the molecular level. It also offers important information for the patients and allows personalized and accurate genetic counseling. In many cases, genetic diagnosis of hearing loss can help to avoid unnecessary and costly clinical testing, offer prognostic information, and guide future medical management. On the other hand, a variety of gene therapeutic approaches have been developed aiming to relieve or converse the hearing loss due to genetic causes. Prevention of genetic hearing loss is feasible through prepregnancy and prenatal genetic diagnosis and counseling.


Genetic hearing loss Deafness genes Genetic screening Genetic diagnosis Gene therapy 


  1. 1.
    Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, Rehm HL, Robin NH, Scott DA, Yoshinaga-Itano C (2014) American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med 16(4):347–355PubMedGoogle Scholar
  2. 2.
    Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, Wu D, Kachar B, Friedman TB, Raphael Y, Camper SA (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9(12):1729–1738PubMedGoogle Scholar
  3. 3.
    Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Griffith AJ, Friedman TB (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7(2):148–156PubMedGoogle Scholar
  4. 4.
    Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12(16):2049–2061PubMedGoogle Scholar
  5. 5.
    Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, Schlumberger M (2000) Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 85(5):2028–2033PubMedGoogle Scholar
  6. 6.
    Bitnerglindzicz M, Pembrey M, Duncan A, Heron J, Ring SM, Hall A, Rahman S (2009) Prevalence of mitochondrial 1555A->G mutation in European children. N Engl J Med 360(6):640–642Google Scholar
  7. 7.
    Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, Karniski LP, Sheffield VC, Smith RJ (2001) Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat 17(5):403–411PubMedGoogle Scholar
  8. 8.
    Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, Li H, Lin X (2015) Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 7(8):1077–1086PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chennupati SK, Levi J, Loftus P, Jornlin C, Morlet T, O’Reilly RC (2011) Hearing loss in children with mitochondrial disorders. Int J Pediatr Otorhinolaryngol 75(12):1519–1524PubMedGoogle Scholar
  10. 10.
    Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12(13):1106–1111PubMedPubMedCentralGoogle Scholar
  11. 11.
    Davcheva-Chakar M, Sukarova-Stefanovska E, Ivanovska V, Lazarevska V, Filipche I, Zafirovska B (2014) Speech perception outcomes after cochlear implantation in children with GJB2/DFNB1 associated deafness. Balkan Med J 31(1):60–63PubMedPubMedCentralGoogle Scholar
  12. 12.
    de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, Pembrey ME, Ropers HH, Cremers FP (1995) Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267(5198):685–688PubMedGoogle Scholar
  13. 13.
    Depreux FF, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, Seidman JG (2008) Eya4-deficient mice are a model for heritable otitis media. J Clin Invest 118(2):651–658PubMedPubMedCentralGoogle Scholar
  14. 14.
    Dhondt JL, Cornejo V, Hoffmann GF, Pollitt R (2010) Expanded newborn screening: social and ethical issues. J Inherit Metab Dis 33(2):211–217Google Scholar
  15. 15.
    Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, Hrabe de Angelis M, Paulmichl M, Weiner S, Avraham KB (2010) Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 285(28):21724–21735PubMedPubMedCentralGoogle Scholar
  16. 16.
    Duan SH, Zhu YM, Wang YL, Guo YF (2015) Common molecular etiology of nonsyndromic hearing loss in 484 patients of 3 ethnicities in northwest China. Acta Otolaryngol 135(6):586–591PubMedGoogle Scholar
  17. 17.
    Ercan-Sencicek AG, Jambi S, Franjic D, Nishimura S, Li M, El-Fishawy P, Morgan TM, Sanders SJ, Bilguvar K, Suri M, Johnson MH, Gupta AR, Yuksel Z, Mane S, Grigorenko E, Picciotto M, Alberts AS, Gunel M, Sestan N, State MW (2015) Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. Eur J Hum Genet 23(2):165–172PubMedGoogle Scholar
  18. 18.
    Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10(2):153–161PubMedGoogle Scholar
  19. 19.
    Gao L, Bryan BA (2017) Finding pathways to national-scale land-sector sustainability. Nature 544(7649):217–221PubMedGoogle Scholar
  20. 20.
    Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y, Li Y, Wang H, Yang S, Xu Q, Polley DB, Liberman MC, Kong WJ, Holt JR, Chen ZY, Liu DR (2018) Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553(7687):217–221PubMedGoogle Scholar
  21. 21.
    Geleoc GS, Holt JR (2014) Sound strategies for hearing restoration. Science 344(6184):1241062PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374(6517):62–64PubMedGoogle Scholar
  23. 23.
    Green GE, Scott DA, McDonald JM, Teagle HFB, Tomblin BJ, Spencer LJ, Woodworth GG, Knutson JF, Gantz BJ, Sheffield VC, Smith RJH (2002) Performance of cochlear implant recipients with GJB2-related deafness. Am J Med Genet 109(3):167–170PubMedPubMedCentralGoogle Scholar
  24. 24.
    Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, Ma T, Zeng G, Yang S, Du J, Meng A (2011) Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet 20(16):3213–3226PubMedGoogle Scholar
  25. 25.
    Harrison M, Roush J, Wallace J (2003) Trends in age of identification and intervention in infants with hearing loss. Ear Hear 24(1):89–95PubMedGoogle Scholar
  26. 26.
    Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB (2004) Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 13(18):2143–2153PubMedGoogle Scholar
  27. 27.
    Holt JR, Johns DC, Wang S, Chen ZY, Dunn RJ, Marban E, Corey DP (1999) Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J Neurophysiol 81(4):1881–1888PubMedGoogle Scholar
  28. 28.
    Hoyt MA, Hyman AA, Bahler M (1997) Motor proteins of the eukaryotic cytoskeleton. Proc Natl Acad Sci U S A 94(24):12747–12748PubMedPubMedCentralGoogle Scholar
  29. 29.
    Isgrig K, Shteamer JW, Belyantseva IA, Drummond MC, Fitzgerald TS, Vijayakumar S, Jones SM, Griffith AJ, Friedman TB, Cunningham LL, Chien WW (2017) Gene therapy restores balance and auditory functions in a mouse model of Usher syndrome. Mol Ther 25(3):780–791PubMedPubMedCentralGoogle Scholar
  30. 30.
    Johnson JL, White KR, Widen JE, Gravel JS, James M, Kennalley T, Maxon AB, Spivak L, Sullivan-Mahoney M, Vohr BR (2005) A multicenter evaluation of how many infants with permanent hearing loss pass a two-stage otoacoustic emissions/automated auditory brainstem response newborn hearing screening protocol. Pediatrics 116(3):663–672PubMedGoogle Scholar
  31. 31.
    Kemperman MH, De Leenheer EM, Huygen PL, Van DG, Morton CC, Robertson NG, Cremers FP, Kremer H, Cremers CW (2005) Audiometric, vestibular, and genetic aspects of a DFNA9 family with a G88E COCH mutation. Otol Neurotol 26(5):926–933PubMedGoogle Scholar
  32. 32.
    Kenneson A, Van Naarden Braun K, Boyle C (2002) GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med 4(4):258–274PubMedGoogle Scholar
  33. 33.
    Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ (2006) Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 25(3):642–652PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97(8):4333–4338PubMedPubMedCentralGoogle Scholar
  35. 35.
    Kiang DT, Jin N, Tu ZJ, Lin HH (1997) Upstream genomic sequence of the human connexin26 gene. Gene 199(1–2):165–171PubMedGoogle Scholar
  36. 36.
    Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187(1–2):25–34PubMedGoogle Scholar
  37. 37.
    Korver AM, Smith RJ, Van CG, Schleiss MR, Bitner-Glindzicz MA, Lustig LR, Usami SI, Boudewyns AN (2017) Congenital hearing loss. Nat Rev Dis Primers 71(10):467Google Scholar
  38. 38.
    Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96(3):437–446PubMedGoogle Scholar
  39. 39.
    Lee K, Ansar M, Andrade PB, Khan B, Santos-Cortez RL, Ahmad W, Leal SM (2012) Novel CLDN14 mutations in Pakistani families with autosomal recessive non-syndromic hearing loss. Am J Med Genet A 158A(2):315–321PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, Bazan NG, Duelli DM, Rigo F, Hastings ML (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19(3):345–350PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lesperance MM, San Agustin TB, Leal SM (2003) Mutations in the Wolfram syndrome type 1 gene (WFS1) define a clinical entity of dominant low-frequency sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 129(4):411PubMedPubMedCentralGoogle Scholar
  42. 42.
    Li H, Kloosterman W, Fekete DM (2010) MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci 30(9):3254–3263PubMedPubMedCentralGoogle Scholar
  43. 43.
    Linden PL, Bitnerglindzicz M, Lench N, Steel KP, Langford C, Dawson SJ, Davis A, Simpson S, Packer C (2013) The future role of genetic screening to detect newborns at risk of childhood-onset hearing loss. Int Audiol 52(2):124–133Google Scholar
  44. 44.
    Luebke AE, Steiger JD, Hodges BL, Amalfitano A (2001) A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther 8(10):789–794PubMedGoogle Scholar
  45. 45.
    Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278(5341):1315–1318PubMedGoogle Scholar
  46. 46.
    Matsushiro N, Doi K, Fuse Y, Nagai K, Yamamoto K, Iwaki T, Kawashima T, Sawada A, Hibino H, Kubo T (2002) Successful cochlear implantation in prelingual profound deafness resulting from the common 233delC mutation of the GJB2 gene in the Japanese. Laryngoscope 112(2):255–261PubMedGoogle Scholar
  47. 47.
    Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41(5):609–613PubMedGoogle Scholar
  48. 48.
    Millan JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C (2011) An update on the genetics of usher syndrome. J Ophthalmol 2011:417217PubMedGoogle Scholar
  49. 49.
    Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, Suzuki M, Furukawa M, Kawase T, Zheng Y, Ogura M, Asada Y, Watanabe K, Yamanaka H, Gotoh S, Nishi-Takeshima M, Sugimoto T, Kikuchi T, Takasaka T, Noda T (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285(5432):1408–1411PubMedGoogle Scholar
  50. 50.
    Miyagawa M, Nishio S-Y, Ikeda T, Fukushima K, Usami S-I (2013) Massively parallel DNA sequencing successfully identifies new causative mutations in deafness genes in patients with cochlear implantation and EAS. PLoS One 8(10):e75793PubMedPubMedCentralGoogle Scholar
  51. 51.
    Morin M, Bryan KE, Mayo-Merino F, Goodyear R, Mencia A, Modamio-Hoybjor S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA (2009) In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 18(16):3075–3089PubMedPubMedCentralGoogle Scholar
  52. 52.
    Morton CC, Nance WE (2006) Newborn hearing screening—a silent revolution. N Engl J Med 354(20):2151–2164PubMedGoogle Scholar
  53. 53.
    Mueller U, Barr-Gillespie PG (2015) New treatment options for hearing loss. Nat Rev Drug Discov 14(5):346–U384Google Scholar
  54. 54.
    Nagashima R, Sugiyama C, Yoneyama M, Ogita K (2005) Transcriptional factors in the cochlea within the inner ear. J Pharmacol Sci 99(4):301–306PubMedGoogle Scholar
  55. 55.
    Neuhaus C, Lang-Roth R, Zimmermann U, Heller R, Eisenberger T, Weikert M, Markus S, Knipper M, Bolz HJ (2017) Extension of the clinical and molecular phenotype of DIAPH1-associated autosomal dominant hearing loss (DFNA1). Clin Genet 91(6):892–901PubMedGoogle Scholar
  56. 56.
    Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15(2):186–189PubMedGoogle Scholar
  57. 57.
    Nickel R, Forge A (2008) Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 16(5):452–457PubMedGoogle Scholar
  58. 58.
    Nie L (2008) KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 16(5):441–444PubMedPubMedCentralGoogle Scholar
  59. 59.
    Nishiyama N, Kawano A, Kawaguchi S, Shirai K, Suzuki M (2013) Cochlear implantation in a patient with Epstein syndrome. Auris Nasus Larynx 40(4):409–412PubMedGoogle Scholar
  60. 60.
    Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, Jodelka FM, Hastings ML, Lentz JJ, Vandenberghe LH, Holt JR, Geleoc GS (2017) Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol 35(3):264–272PubMedPubMedCentralGoogle Scholar
  61. 61.
    Peters LM, Anderson DW, Griffith AJ, Grundfast KM, San Agustin TB, Madeo AC, Friedman TB, Morell RJ (2002) Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet 11(23):2877–2885PubMedGoogle Scholar
  62. 62.
    Petrof G, Nanda A, Howden J, Takeichi T, McMillan JR, Aristodemou S, Ozoemena L, Liu L, South AP, Pourreyron C, Dafou D, Proudfoot LE, Al-Ajmi H, Akiyama M, McLean WH, Simpson MA, Parsons M, McGrath JA (2014) Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome. Am J Hum Genet 95(3):308–314PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pfister M, Thiele H, Camp GV, Fransen E, Apaydin F, Aydin Ö, Leistenschneider P, Devoto M, Zenner HP, Blin N (2004) A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations. Cell Physiol Biochem 14(4–6):369–376PubMedGoogle Scholar
  64. 64.
    Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I (2012) Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet 57(10):621–632PubMedGoogle Scholar
  65. 65.
    Rabinowitz JE, Samulski RJ (2000) Building a better vector: the manipulation of AAV virions. Virology 278(2):301–308PubMedGoogle Scholar
  66. 66.
    Rabionet R, Zelante L, Lopez-Bigas N, D’Agruma L, Melchionda S, Restagno G, Arbones ML, Gasparini P, Estivill X (2000) Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum Genet 106(1):40–44PubMedGoogle Scholar
  67. 67.
    Reardon W, Lewis N, Hughes HE (1993) Consanguinity, cardiac arrest, hearing impairment, and ECG abnormalities: counselling pitfalls in the Romano-Ward syndrome. J Med Genet 30(4):325–327PubMedPubMedCentralGoogle Scholar
  68. 68.
    Reardon W, Mahoney CFO, Trembath R, Jan H, Phelps PD (2000) Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene. QJM 93(2):99–104PubMedGoogle Scholar
  69. 69.
    Rhodes CR, Hertzano R, Fuchs H, Bell RE, de Angelis MH, Steel KP, Avraham KB (2004) A Myo7a mutation cosegregates with stereocilia defects and low-frequency hearing impairment. Mamm Genome 15(9):686–697PubMedGoogle Scholar
  70. 70.
    Rivas A, Francis HW (2005) Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol 26(3):415–424PubMedGoogle Scholar
  71. 71.
    Robbins J (2001) KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90(1):1–19PubMedGoogle Scholar
  72. 72.
    Roche JP, Hansen MR (2015) On the horizon cochlear implant technology. Otolaryngol Clin N Am 48(6):1097–1116Google Scholar
  73. 73.
    Rodriguez-Ballesteros M, Reynoso R, Olarte M, Villamar M, Morera C, Santarelli R, Arslan E, Meda C, Curet C, Volter C, Sainz-Quevedo M, Castorina P, Ambrosetti U, Berrettini S, Frei K, Tedin S, Smith J, Cruz Tapia M, Cavalle L, Gelvez N, Primignani P, Gomez-Rosas E, Martin M, Moreno-Pelayo MA, Tamayo M, Moreno-Barral J, Moreno F, del Castillo I (2008) A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy. Hum Mutat 29(6):823–831PubMedGoogle Scholar
  74. 74.
    Rouillon I, Marcolla A, Roux I, Marlin S, Feldmann D, Couderc R, Jonard L, Petit C, Denoyelle F, Garabedian EN, Loundon N (2006) Results of cochlear implantation in two children with mutations in the OTOF gene. Int J Pediatr Otorhinolaryngol 70(4):689–696PubMedGoogle Scholar
  75. 75.
    Sanger F (1975) The Croonian Lecture, 1975: nucleotide sequences in DNA. Proc R Soc Lond B Biol Sci 191(1104):317–333PubMedGoogle Scholar
  76. 76.
    Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448PubMedGoogle Scholar
  77. 77.
    Shearer AE, Deluca AP, Hildebrand MS, Taylor KR, Scherer S, Scheetz TE, Smith RJ (2010) Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A 107(49):21104–21109PubMedPubMedCentralGoogle Scholar
  78. 78.
    Shearer AE, Smith RJH (2015) Massively parallel sequencing for genetic diagnosis of hearing loss: the new standard of care. Otolaryngol Head Neck Surg 153(2):175–182PubMedPubMedCentralGoogle Scholar
  79. 79.
    Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen ZY (2016) Identification of adeno-associated viral vectors (AAV) that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene TherGoogle Scholar
  80. 80.
    Sloanheggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, Ephraim SS, Shibata SB, Booth KT, Campbell CA (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135(4):441–450Google Scholar
  81. 81.
    Sloan-Heggen CM, Smith RJ (2016) Navigating genetic diagnostics in patients with hearing loss. Curr Opin Pediatr 28(6):705PubMedPubMedCentralGoogle Scholar
  82. 82.
    Smith RJH, Bale JF, White KR (2005) Sensorineural hearing loss in children. Lancet 365(9462):879–890PubMedGoogle Scholar
  83. 83.
    Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62(2):228–232PubMedGoogle Scholar
  84. 84.
    Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE (2001) Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. Am J Physiol Renal Physiol 280(2):F356–F364PubMedGoogle Scholar
  85. 85.
    Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7(1):45524PubMedPubMedCentralGoogle Scholar
  86. 86.
    Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12(1):13–21PubMedGoogle Scholar
  87. 87.
    Tsukada K, Ichinose A, Miyagawa M, Mori K, Hattori M, Nishio S-Y, Naito Y, Kitajiri S-I, Usami S-I (2015) Detailed hearing and vestibular profiles in the patients with COCH mutations. Ann Otol Rhinol Laryngol 124:100S–110SPubMedGoogle Scholar
  88. 88.
    Usami S-I, Miyagawa M, Nishio S-Y, Moteki H, Takumi Y, Suzuki M, Kitano Y, Iwasaki S (2012) Patients with CDH23 mutations and the 1555A > G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS). Acta Otolaryngol 132(4):377–384PubMedPubMedCentralGoogle Scholar
  89. 89.
    van Wijk E, Krieger E, Kemperman MH, De Leenheer EM, Huygen PL, Cremers CW, Cremers FP, Kremer H (2003) A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 40(12):879–884PubMedPubMedCentralGoogle Scholar
  90. 90.
    Volk AE, Lang-Roth R, Yigit G, Borck G, Nuernberg G, Rosenkranz S, Nuernberg P, Kubisch C, Beutner D (2013) A novel MYO6 splice site mutation causes autosomal dominant sensorineural hearing loss type DFNA22 with a favourable outcome after cochlear implantation. Audiol Neuro Otol 18(3):192–199Google Scholar
  91. 91.
    Vore AP, Chang EH, Hoppe JE, Butler MG, Forrester S, Schneider MC, Smith LL, Burke DW, Campbell CA, Smith RJ (2005) Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 131(12):1057PubMedGoogle Scholar
  92. 92.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12(1):17–23PubMedGoogle Scholar
  93. 93.
    Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjarg L, Morton CC, Ryan AF, Van Camp G, Smith RJ (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10(3):195–200PubMedGoogle Scholar
  94. 94.
    Weegerink NJD, Schraders M, Oostrik J, Huygen PLM, Strom TM, Granneman S, Pennings RJE, Venselaar H, Hoefsloot LH, Elting M, Cremers CWRJ, Admiraal RJC, Kremer H, Kunst HPM (2011) Genotype-phenotype correlation in DFNB8/10 families with TMPRSS3 mutations. J Assoc Res Otolaryngol 12(6):753–766PubMedPubMedCentralGoogle Scholar
  95. 95.
    Weiss S, Gottfried I, Mayrose I, Khare SL, Xiang M, Dawson SJ, Avraham KB (2003) The DFNA15 deafness mutation affects POU4F3 protein stability, localization, and transcriptional activity. Mol Cell Biol 23(22):7957–7964PubMedPubMedCentralGoogle Scholar
  96. 96.
    Wu CC, Hung CC, Lin SY, Hsieh WS, Tsao PN, Lee CN, Su YN, Hsu CJ (2011) Newborn genetic screening for hearing impairment: a preliminary study at a tertiary center. PLoS One 6(7):e22314PubMedPubMedCentralGoogle Scholar
  97. 97.
    Wu C-C, Lee Y-C, Chen P-J, Hsu C-J (2008) Predominance of genetic diagnosis and imaging results as predictors in determining the speech perception performance outcome after cochlear implantation in children. Arch Pediatr Adolesc Med 162(3):269–276PubMedGoogle Scholar
  98. 98.
    Yao GD, Shou-Xia LI, Chen DL, Feng HQ, Zhao SB, Liu YJ, Guo LL, Yang ZM, Zhang XF, Sun CX (2014) Combination of hearing screening and genetic screening for deafness-susceptibility genes in newborns. Exp Ther Med 7(1):218–222PubMedGoogle Scholar
  99. 99.
    Yoshinagaitano C, Sedey AL, Coulter DK, Mehl AL (1998) Language of early- and later-identified children with hearing loss. Pediatrics 102(5):1161–1171Google Scholar
  100. 100.
    Young NM, Reilly BK, Burke L (2016) Limitations of universal newborn hearing screening in early identification of pediatric cochlear implant candidates. Arch Otolaryngol Head Neck Surg 137(3):230Google Scholar
  101. 101.
    Zhang J, Wang P, Han B, Ding Y, Pan L, Zou J, Liu H, Pang X, Liu E, Wang H (2013) Newborn hearing concurrent genetic screening for hearing impairment-a clinical practice in 58,397 neonates in Tianjin, China. Int J Pediatr Otorhinolaryngol 77(12):1929–1935PubMedGoogle Scholar
  102. 102.
    Zhang Z, Ding W, Liu X, Xu B, Wan D, Nan S, Guo Y (2012) Auditory screening concurrent deafness predisposing genes screening in 10,043 neonates in Gansu province, China. Int J Pediatr Otorhinolaryngol 76(7):984–988PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tao Yang
    • 1
    • 2
    • 3
  • Luo Guo
    • 4
  • Longhao Wang
    • 1
    • 2
    • 3
  • Xiaoyu Yu
    • 1
    • 2
    • 3
  1. 1.Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.Ear InstituteShanghai Jiaotong University School of MedicineShanghaiChina
  3. 3.Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
  4. 4.Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina

Personalised recommendations