Advertisement

Amplification of CW Single-Frequency Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)

Abstract

In this chapter, we focus on the amplification of continuous-wave single-frequency lasers. In this case, the single-frequency power scaling is mainly limited by the stimulated Brillouin scattering and thermal effects in the amplifying fiber. To address these problems, different schemes have been proposed to suppress the fiber nonlinear and thermal effects, a most popular one is using large mode area active fiber to decrease the laser intensity and thermal energy per unit area. The layout trifurcates into three sections concerning the laser amplification in the 1.0 μm, 1.5 μm, and 2.0 μm regions, which corresponds to the well-known dopants (i.e., erbium, ytterbium, and thulium ions) in optical fiber. In each section, the emission characteristics such as the spectral features of the corresponding rare-earth dopants are first introduced. Then a theoretical mode is established for the analysis of the fiber amplifiers in the three wavelength bands. Finally, experimental progress on single-frequency fiber amplification is introduced and discussed in each section.

References

  1. 1.
    Harber DM, Romalis MV (2000) Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg. Phys Rev A 63:13402–13401CrossRefGoogle Scholar
  2. 2.
    Scheid M, Markert F, Walz J, Wang J, Kirchner M, Hänsch TW (2007) 750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury. Opt Lett 32:955ADSCrossRefGoogle Scholar
  3. 3.
    Yamaguchi A, Uetake S, Takahashi Y (2008) A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms. Appl Phys B Lasers Opt 91:57ADSCrossRefGoogle Scholar
  4. 4.
    Paul J, Kaneda Y, Wang TL, Lytle C, Moloney JV, Jones RJ (2011) Doppler-free spectroscopy of mercury at 253.7 nm using a high-power frequency-quadrupled optically pumped external-cavity semiconductor laser. Opt Lett 36:61ADSCrossRefGoogle Scholar
  5. 5.
    Bohler CL, Marton BI (1994) Helium spectroscopy using an InGaAs laser diode. Opt Lett 19:1346ADSCrossRefGoogle Scholar
  6. 6.
    Arie A, Pastor PC, Pavone FS, Massimo I (1995) Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions. Opt Commun 117:78ADSCrossRefGoogle Scholar
  7. 7.
    Wu T, Peng X, Gong W, Zhan Y, Lin Z, Luo B, Guo H (2013) Observation and optimization of 4He atomic polarization spectroscopy. Opt Lett 38:986ADSCrossRefGoogle Scholar
  8. 8.
    Gray S, Liu A, Walton DT, Wang J, Li M, Chen X, Ruffin AB, DeMeritt JA, Zenteno LA (2007) 502 Watt single transverse mode narrow linewidth bidirectionally pumped Yb-doped fiber amplifier. Opt Express 15:17044ADSCrossRefGoogle Scholar
  9. 9.
    Zhou P, Ma YX, Wang XL, Ma HT, Xu XJ, Liu ZJ (2009) Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Opt Lett 34:2939ADSCrossRefGoogle Scholar
  10. 10.
    Advanced LIGO homepage: http://www.ligo.caltech.edu/advLIGOGoogle Scholar
  11. 11.
    Yang CS, Xu SH, Chen D, Zhang YF, Zhao QL, Li C, Zhou KJ, Feng ZM, Gan JL, Yang ZM (2016) 52 W kHz-linewidth low-noise linearly polarized all-fiber single-frequency MOPA laser. J Opt 18:055801ADSCrossRefGoogle Scholar
  12. 12.
    Yang CS (2015) Study on high-performance high-power kHz linewidth single-frequency fiber laser and its application in frequency doubling. Ph. D. thesis of South China University of Technology, GuangzhouGoogle Scholar
  13. 13.
    Guo YB, Huo JY (2008) Fiber laser and its application. Beijing Science Press, Beijing, p 124Google Scholar
  14. 14.
    Zhu XS, Zhu GW, Shi W, Zong J, Wiersma K, Nguyen D, Norwood RA, Pirson AC, Peyghambarian N (2013) 976 nm single-polarization single-frequency Ytterbium-doped phosphate fiber amplifiers. IEEE Photon Technol Lett 25:1365ADSCrossRefGoogle Scholar
  15. 15.
    Yang CS, Xu SH, Yang Q, Lin W, Mo SP, Li C, Feng ZM, Chen DD, Yang ZM, Jiang ZH (2014) High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers. Appl Phys Express 7:062702ADSCrossRefGoogle Scholar
  16. 16.
    Giles CR, Desurvire E (1991) Modeling erbium-doped fiber amplifier. J Lightwave Technol 9:271ADSCrossRefGoogle Scholar
  17. 17.
    Wang Y, Po H (2003) Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification. J Lightwave Technol 21:2262ADSCrossRefGoogle Scholar
  18. 18.
    Hu JM, Zhang L, Liu HL, Liu KK, Xu Z, Feng Y (2014) High power single-frequency 1014.8 nm Yb-doped fiber amplifier working at room temperature. Appl Opt 53:4972ADSCrossRefGoogle Scholar
  19. 19.
    Paschotta R, Nilsson J, Tropper AC, Hanna DC (1997) Ytterbium-doped fiber amplifiers. IEEE J Quantum Electron 33:1049ADSCrossRefGoogle Scholar
  20. 20.
    Kontur FJ, Dajani I, Lu Y, Knize RJ (2007) Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT and PPMgLN. Opt Express 15:12882ADSCrossRefGoogle Scholar
  21. 21.
    Kumar SC, Samanta GK, Devi K, Ebrahim-Zadeh M (2011) High-efficiency multicrystal single-pass continuous-wave second harmonic generation. Opt Express 19:11152ADSCrossRefGoogle Scholar
  22. 22.
    Samanta GK, Fayaz GR, Ebrahim-Zadeh M (2007) 1.59 W single-frequency continuous-wave optical parametric oscillator based on MgO:sPPLT. Opt Lett 32:2623ADSCrossRefGoogle Scholar
  23. 23.
    Zhang L, Cui SZ, Liu C, Zhou J, Feng Y (2013) 170 W single-frequency single-mode linearly-polarized Yb-doped all-fiber amplifier. Opt Express 21:5456ADSCrossRefGoogle Scholar
  24. 24.
    Liu C, Qi YF, Ding YQ, Zhou J, Dong JX, Wei YR, Lou QH (2011) All-fiber high power single-frequency linearly polarized ytterbium-doped fiber amplifier. Chin Opt Lett 9:031402–031401ADSCrossRefGoogle Scholar
  25. 25.
    Mermelstein MD, Brar K, Andrejco MJ, Yablon AJ, Fishteyn M, Headley C, DiGiovanni DJ (2008) All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier. Proc SPIE 6873:68730L-1CrossRefGoogle Scholar
  26. 26.
    Höfer S, Liem A, Limpert J, Zellmer H, Tünnermann A, Unger S, Jetschke S, Müller HR, Freitag I (2001) Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power. Opt Lett 26:1326ADSCrossRefGoogle Scholar
  27. 27.
    Knight DJE, Minardi F, Natale PD, Laporta P (1998) Frequency doubling of a fibre-amplified 1083 nm DBR laser. Eur Phys J D 3:211ADSCrossRefGoogle Scholar
  28. 28.
    Hong FL, Inaba H, Hosaka K, Yasuda M, Onae A (2009) Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm. Opt Express 17:1652ADSCrossRefGoogle Scholar
  29. 29.
    Minardi F, Bianchini G, Pastor PC, Giusfredi G, Pavone FS, Inguscio M (1999) Measurement of the Helium 23P0 – 23P1 fine structure interval. Phys Rev Lett 82:1112ADSCrossRefGoogle Scholar
  30. 30.
    Pastor PC, Natale PD, Giusfredi G, Pavone FS, Inguscio M (2001) High precision measurements on helium at 1083 nm. Lect Notes Phys 570:314ADSCrossRefGoogle Scholar
  31. 31.
    Carlson CG, Dragic PD, Graf BW, Price RK, Coleman JJ, Awenson GR (2008) High power Yb-doped fiber laser-based LIDAR for space weather. Proc SPIE 6873:68730K-1CrossRefGoogle Scholar
  32. 32.
    Carlson CG, Dragic PD, Price RK, Coleman JJ, Awenson GR (2009) A narrow-linewidth Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar. IEEE J Sel Top Quant Electron 15:451ADSCrossRefGoogle Scholar
  33. 33.
    Daniels JM, Schearer LD, Leduc M, Nacher PJ (1987) Polarizing 3He nuclei with neodymium La1-x NdxMgAl11O19 lasers. J Opt Soc Am B 2:1133ADSCrossRefGoogle Scholar
  34. 34.
    Prevedelli M, Cancio P, Giusfredi G, Pavone FS, Inguscio M (1996) Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium. Opt Commun 125:231ADSCrossRefGoogle Scholar
  35. 35.
    Paschotta R, Hanna DC, Natale PD, Modugno G, Inguscio M, Laporta P (1997) Power amplifier for 1083 nm using ytterbium doped fibre. Opt Commun 136:243ADSCrossRefGoogle Scholar
  36. 36.
    Xu JM, Su RT, Xiao H, Zhou P, Hou J (2012) 90.4-W all-fiber single-frequency polarization-maintained 1083-nm MOPA laser employing ring-cavity single-frequency seed oscillator. Chin Opt Lett 10:031402–031401ADSCrossRefGoogle Scholar
  37. 37.
    Huang S, Feng Y, Dong J, Shirakawa A, Musha M, Ueda K (2005) 1083 nm single-frequency ytterbium doped fiber laser. Laser Phys Lett 2:498ADSCrossRefGoogle Scholar
  38. 38.
    Yang CS, Xu SH, Yang Q, Mo SP, Li C, He X, Feng ZM, Yang ZM, Jiang ZH (2014) High OSNR watt-level single-frequency one stage PM-MOPA fiber laser at 1083 nm. Opt Express 22:1181ADSCrossRefGoogle Scholar
  39. 39.
    Spiegelberg C, Geng J, Hu Y, Kaneda Y, Jiang SB, Peyghambarian N (2004) Low-noise narrow-linewidth fiber laser at 1550 nm. J Lightwave Technol 22:57ADSCrossRefGoogle Scholar
  40. 40.
    Xu SH, Yang ZM, Liu T, Zhang WN, Feng ZM, Zhang QY, Jiang ZH (2010) An efficient compact 300 mW narrow-linewidth single-frequency fiber laser at 1.5 μm. Opt Express 18:1249ADSCrossRefGoogle Scholar
  41. 41.
    Barnard C, Myslinski P, Chrostowski J, Kavehrad M (1994) Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J Quantum Electron 30:1817ADSCrossRefGoogle Scholar
  42. 42.
    Wang Q, Dutta NK (2003) Er-Yb doped double clad fiber amplifier. Proc SPIE 5246:208ADSCrossRefGoogle Scholar
  43. 43.
    Psaltis D (2002) Coherent optical information systems. Science 298:1359ADSCrossRefGoogle Scholar
  44. 44.
    Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101ADSCrossRefGoogle Scholar
  45. 45.
    Geng JH, Spiegelberg C, Jiang SB (2005) Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry. IEEE Photon Technol Lett 17:1827ADSCrossRefGoogle Scholar
  46. 46.
    Ma YX, Wang XL, Leng JY, Xiao H, Dong XL, Zhu JJ, Du WB, Zhou P, Xu XJ, Si L, Liu ZJ, Zhao YJ (2011) Coherent beam combination of 1.08 kW fiber amplifier array using single-frequency dithering technique. Opt Lett 36:951ADSCrossRefGoogle Scholar
  47. 47.
    Ball GA, Holton CE, Hull-Allen G, Morey WW (1994) 60 mW 1.5 μm single-frequency low-noise fiber laser MOPA. IEEE Photon Technol Lett 6:192ADSCrossRefGoogle Scholar
  48. 48.
    Pan JJ, Shi Y (1999) 166-mW single-frequency output power interactive fiber lasers with low noise. IEEE Photon Technol Lett 11:36ADSCrossRefGoogle Scholar
  49. 49.
    Alegria C, Jeong Y, Codemard C, Sahu JK, Alvarez-Chavez JA, Fu L, Ibsen M, Nilsson J (2004) 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber. IEEE Photon Technol Lett 16:1825ADSCrossRefGoogle Scholar
  50. 50.
    Li L, Schülzgen A, Temyanko VL, Morrell MM, Sabet S (2006) Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power. Appl Phys Lett 88:161106ADSCrossRefGoogle Scholar
  51. 51.
    Qiu T, Li L, Schülzgen A, Temyanko VL, Luo T, Jiang S, Mafi A, Moloney JV, Peyghambarian N (2004) Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers. IEEE Photon Technol Lett 16:2592ADSCrossRefGoogle Scholar
  52. 52.
    Yang CS, Xu SH, Li C, Mo SP, Feng ZM, Yang ZM, Jiang ZH (2013) Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier. Appl Phys Express 6:022703ADSCrossRefGoogle Scholar
  53. 53.
    Leng JY, Wang XL, Xiao H, Zhou P, Ma YX, Guo SF, Xu XJ (2012) Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification. Laser Phys Lett 9:532ADSCrossRefGoogle Scholar
  54. 54.
    Sané SS, Bennetts S, Debs JE, Kuhn CCN, McDonald GD, Altin PA, Close JD, Robins NP (2012) 11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of rubidium. Opt Express 20:8915ADSCrossRefGoogle Scholar
  55. 55.
    Vyatkin MY, Dronov AG, Chernikov MA, Gapontsev DV, Gapontsev VP (2005) High power 780 nm single-frequency linearly-polarized laser. Proc SPIE 5709:125ADSCrossRefGoogle Scholar
  56. 56.
    Yusim A, Barsalou J, Gapontsev D, Platonov NS, Shkurikhin O, Gapontsev VP, Barannikov YA, Shcherbina FV (2005) 100 Watt single-mode CW linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects. Proc SPIE 5709:69ADSCrossRefGoogle Scholar
  57. 57.
    Liem A, Limpert J, Schreiber T, Reich M, Zellmer H, Tünnermann A, Carter A, Tankala K (2004) High power linearly polarized fiber laser. In Lasers Electro-Optics proceedings CMS4 Conference, San-Francisco, CA, USAGoogle Scholar
  58. 58.
    Sobon G, Kaczmarek P, Antonczak A, Sotor J, Waz A, Dudzik G, Krzempek K, Abramski KM (2012) 3-stage all-in-fiber MOPA source operating at 1550 nm with 20 W output power. Proc SPIE 8237:82372RADSCrossRefGoogle Scholar
  59. 59.
    Khitrov V, Samson B, Manyam U, Tankala K, Machewirth D, Heinemann S, Galvanauskas A (2005) Linearly polarized high power fiber lasers with monolithic PM-LMA-fiber and LMA-grating based cavities and their use for nonlinear wavelength conversion. Proc SPIE 5709:53ADSCrossRefGoogle Scholar
  60. 60.
    Alam SU, Wixey R, Hickey L, Yla-Jarkko K, Zervas M (2004) High power single-mode single-frequency DFB fibre laser at 1550 nm in MOPA configuration. In Lasers and Electro-Optics (CLEO) Conference, San Francisco, 1Google Scholar
  61. 61.
    Imai Y, Shimada N (1993) Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers. IEEE Photon Technol Lett 5:1335ADSCrossRefGoogle Scholar
  62. 62.
    Hansryd J, Dross F, Westlund M, Andrekson PA, Knudsen SN (2001) Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution. J Lightwave Technol 19:1691ADSCrossRefGoogle Scholar
  63. 63.
    Yang CS, Xu SH, Mo SP, Li C, Feng ZM, Chen DD, Yang ZM, Jiang ZH (2013) 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm. Opt Express 21:12546ADSCrossRefGoogle Scholar
  64. 64.
    Bai XL, Sheng Q, Zhang HW, Zhang SJ, Shi W, Yao JQ (2015) High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier. IEEE Photonics J 7:7103106Google Scholar
  65. 65.
    Creeden D, Pretorius H, Limongelli J, Setzler SD (2016) Single-frequency 1560 nm Er: Yb fiber amplifier with 207 W output power and 50.5% slope efficiency. Proc SPIE 9728:97282L-1CrossRefGoogle Scholar
  66. 66.
    Fortin V, Bernier M, Bah ST, Vallée R (2015) 30 W fluoride glass all-fiber laser at 2.94 μm. Opt Lett 40:2882ADSCrossRefGoogle Scholar
  67. 67.
    Percival RM, Szebesta D, Seltzer CP, Perin SD, Davey ST, Louka M (1995) A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency. IEEE J Quantum Electron 31:489ADSCrossRefGoogle Scholar
  68. 68.
    Clément Q, Melkonian JM, Barrientos-Barria J, Dherbecourt JB, Raybaut M, Godard A (2013) Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2. Opt Lett 38:4046ADSCrossRefGoogle Scholar
  69. 69.
    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tünnermann A (2014) 152 W average power Tm-doped fiber CPA system. Opt Lett 39:4671ADSCrossRefGoogle Scholar
  70. 70.
    Wang X, Zhou P, Zhang HW, Wang XL, Xiao H, Liu ZJ (2014) 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. Opt Lett 39:4329ADSCrossRefGoogle Scholar
  71. 71.
    Hutcheon RJ, Perrett BJ, Mason PD (2004) Modeling of thermal effects within a 2 μm pumped ZGP optical parametric oscillator operating in the mid-infrared. Proc SPIE 5620:264ADSCrossRefGoogle Scholar
  72. 72.
    Lippert E, Rustad G, Nicolas S, Arisholm G, Stenersen K (2004) Fibre laser pumped mid-infrared source. Proc SPIE 5620:56ADSCrossRefGoogle Scholar
  73. 73.
    Liu J, Shi HX, Liu K, Hou YB, Wang P (2014) 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Opt Express 22:13572ADSCrossRefGoogle Scholar
  74. 74.
    Goodno GD, Book LD, Rothenberg JE (2009) Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt Lett 34:1204ADSCrossRefGoogle Scholar
  75. 75.
    Xu SH, Yang ZM, Zhang WN, Wei XM, Qian Q, Chen DD, Zhang QY, Shen SX, Peng MY, Qiu JR (2011) 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt Lett 36:3708ADSCrossRefGoogle Scholar
  76. 76.
    Babin SA, Churkin DV, Kablukov SI, Nikulin MA (2007) Single-frequency linearly polarized DFB fiber laser source. Proc SPIE 6727:672716–672711CrossRefGoogle Scholar
  77. 77.
    Agger S, Povlsen JH, Varming P (2004) Single-frequency thulium-doped distributed-feedback fiber laser. Opt Lett 29:1503ADSCrossRefGoogle Scholar
  78. 78.
    Geng JH, Wang Q, Luo T, Jiang SB, Amzajerdian F (2009) Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber. Opt Lett 34:3493ADSCrossRefGoogle Scholar
  79. 79.
    Voo NY, Sahu JK, Ibsen M (2005) 345-mW 1836-nm single-frequency DFB fiber laser MOPA. IEEE Photonic Tech L 17:2550ADSCrossRefGoogle Scholar
  80. 80.
    Gapontsev D, Platonov N, Meleshkevich M, Mishechkin O, Shkurikhin O, Agger S, Varming P, Povlsen JH (2007) 20 W single-frequency fiber laser operating at 1.93 μm. In Conference on Lasers and Electro-OpticsGoogle Scholar
  81. 81.
    Shen DY, Zhang Z, Boyland AJ, Sahu JK, Clarkson WA, Ibsen M (2007) Thulium-doped distributed-feedback fiber laser with >0.3 W output at 1935 nm. In Bragg Gratings, Photosensitivity, and Poling in Glass WaveguidesGoogle Scholar
  82. 82.
    Zhang Z, Shen DY, Boyland AJ, Sahu JK, Clarkson WA, Ibsen M (2008) High-power tm-doped fiber distributed-feedback laser at 1943 nm. Opt Lett 33:2059ADSCrossRefGoogle Scholar
  83. 83.
    Zhang Z, Boyland AJ, Sahu JK, Ibsen M, Clarkson WA (2008) Single-frequency Tm-doped fiber master-oscillator power-amplifier with 10 W linearly polarized output at 1943 nm. In Lasers and Electro-Optics ConferenceGoogle Scholar
  84. 84.
    Pearson L, Kim JW, Zhang Z, Ibsen M, Sahu JK, Clarkson WA (2010) High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier. Opt Express 18:1607ADSCrossRefGoogle Scholar
  85. 85.
    Geng J, Wu J, Jiang SB, Yu JR (2007) Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Opt Lett 32:355ADSCrossRefGoogle Scholar
  86. 86.
    Yang Q, Xu SH, Li C, Yang CS, Feng ZM, Xiao Y, Huang X, Yang ZM (2015) A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 μm. Chin Phys Lett 32:094206ADSCrossRefGoogle Scholar
  87. 87.
    Wang X, Zhou P, Xiao H, Ma YX, Xu XJ, Liu ZJ (2012) 310 W single-frequency all-fiber laser in master oscillator power amplification configuration. Laser Phys Lett 9:591ADSCrossRefGoogle Scholar
  88. 88.
    Yin K, Zhu RZ, Zhang B, Liu GC, Zhou P, Hou J (2016) 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser. Opt Express 24:11085ADSCrossRefGoogle Scholar
  89. 89.
    Jackson SD, King TA (1999) Theoretical modeling of Tm-doped silica fiber lasers. J Lightwave Technol 17:948ADSCrossRefGoogle Scholar
  90. 90.
    Jackson SD, King TA (1999) Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers. J Opt Soc Am B 16:2178ADSCrossRefGoogle Scholar
  91. 91.
    Wang X, Zhou P, Wang XL, Xiao H, Si L (2013) 102 W monolithic single-frequency tm-doped fiber MOPA. Opt Express 21:32386ADSCrossRefGoogle Scholar
  92. 92.
    Wu JF, Yao ZD, Zong J, Jiang SB (2007) Highly efficient high-power thulium-doped germanate glass fiber laser. Opt Lett 32:638ADSCrossRefGoogle Scholar
  93. 93.
    Yang CS, Chen D, Xu SH, Deng HQ, Lin W, Zhao QL, Zhang YF, Zhou KJ, Feng ZM, Qian Q, Yang ZM (2016) Short all tm-doped germanate glass fiber MOPA single-frequency laser at 1.95 μm. Opt Express 24:10956ADSCrossRefGoogle Scholar
  94. 94.
    Barnes NP, Walsh BM, Reichle DJ, DeYoung RJ, Jiang SB (2007) Tm: germanate fiber laser: tuning and Q-switching. Appl Phys B Lasers Opt 89:299ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations