Advertisement

Amplification Technologies of Single-Frequency Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)

Abstract

Up to now, we have already discussed the technologies concerning the single-frequency fiber cavity, which can be engineered to realize various performance targeting a vast number of applications. Nevertheless, one of the most important performance, i.e., the output power, is yet to be scaled for many applying occasions, even though heavily doped active fiber can enable watt-level output power from a single resonator. Therefore, extra amplification of the single-frequency laser is indispensable to further booster its power. To this end, a common method is to implement the double-clad fiber-based master oscillation power amplifier, which has a similar pumping scheme with that of the fiber oscillator while without the cavity design. In this chapter, we first discuss the significance of amplifying single-frequency lasers and then introduce the principle of the amplifier scheme. After that, the structure of a general fiber amplifier is introduced in terms of the double-clad fiber technology and the cladding pump-coupled technology. Finally, the limitation factors of amplifying single-frequency lasers in optical fiber are discussed.

References

  1. 1.
    Lienhart F, Boussen S, Carat O, Zahzam N, Bidel Y, Bresson A (2007) Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm. Appl Phys B Lasers Opt 89:177ADSCrossRefGoogle Scholar
  2. 2.
    Mugnier A, Jacquemet M, Mercier EL, Lebref R, Pureur D (2012) High power single-frequency 780 nm fiber laser source for Rb trapping and cooling applications. Proc SPIE 8237:82371F–1Google Scholar
  3. 3.
    Ball GA, Holton CE, Hull-Allen G, Morey WW (1994) 60 mW 1.5 μm single-frequency low-noise fiber laser MOPA. IEEE Photon Technol Lett 6:192ADSCrossRefGoogle Scholar
  4. 4.
    Pan JJ, Shi Y (1999) 166-mW single-frequency output power interactive fiber lasers with low noise. IEEE Photon Technol Lett 11:36ADSCrossRefGoogle Scholar
  5. 5.
    Alegria C, Jeong Y, Codemard C, Sahu JK, Alvarez-Chavez JA, Fu L, Ibsen M, Nilsson J (2004) 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber. IEEE Photon Technol Lett 16:1825ADSCrossRefGoogle Scholar
  6. 6.
    Li L, Schülzgen A, Temyanko VL, Morrell MM, Sabet S (2006) Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power. Appl Phys Lett 88:161106ADSCrossRefGoogle Scholar
  7. 7.
    Qiu T, Li L, Schülzgen A, Temyanko VL, Luo T, Jiang S, Mafi A, Moloney JV, Peyghambarian N (2004) Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers. IEEE Photon Technol Lett 16:2592ADSCrossRefGoogle Scholar
  8. 8.
    Höfer S, Liem A, Limpert J, Zellmer H, Tünnermann A, Unger S, Jetschke S, Müller HR, Freitag I (2001) Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power. Opt Lett 26:1326ADSCrossRefGoogle Scholar
  9. 9.
    Yarnall TM, Ulmer TG, Spellmeyer NW, Caplan DO (2009) Single-polarization cladding-pumped optical amplifier without polarization-maintaining gain fiber. IEEE Photon Technol Lett 21:1326ADSCrossRefGoogle Scholar
  10. 10.
    Wysocki P, Wood T, Grant A, Holcomb D, Chang K, Santo M, Braun L, Johnson G (2006) High reliability 49 dB gain 13 W PM fiber amplifier at 1550 nm with 30 dB PER and record efficiency. OFC. Postdeadline Session II, PDP17Google Scholar
  11. 11.
    Jeong Y, Nilsson J, Sahu J, Soh D, Alegria C, Dupriez P, Codemard C, Payne D, Horley R, Hickey L, Wanczyk L, Chryssou C, Alvarez-Chavez J, Turner P (2004) Single-frequency polarized Ytterbium-doped fiber MOPA source with 264 W output power. Conference on Lasers electro-optics postdeadline papers CPDD1Google Scholar
  12. 12.
    Vu KT, Malinowski A, Richardson DJ, Ghiringhelli F, Hickey LMB, Zervas MN (2006) Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. Opt Express 14:10996ADSCrossRefGoogle Scholar
  13. 13.
    Schimpf DN, Ruchert C, Nodop D, Limpert J, Tünnermann A, Salin F (2008) Compensation of pulse distortion in saturated laser amplifiers. Opt Express 16:17637ADSCrossRefGoogle Scholar
  14. 14.
    He F, Price JH, Vu KT, Malinowski A, Sahu JK, Richardson DJ (2006) Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling. Opt Express 14:12846ADSCrossRefGoogle Scholar
  15. 15.
    Morasse B, Chatigny S, Desrosiers C, Gagnon É, Lapointe M, Sandro J (2009) Simple design for single mode high power CW fiber laser using multimode high NA fiber. Proc SPIE 7195:7195ADSGoogle Scholar
  16. 16.
    Karasek M (1997) Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications. IEEE J Quantum Elect 33:1769CrossRefGoogle Scholar
  17. 17.
    Chryssou CE, Pasquale FD, Pitt CW (2001) Improved gain performance in Yb3+ sensitized Er3+ doped alumina (Al2O3) channel optical waveguide amplifiers. IEEE J Lightwave Technol 19:343ADSCrossRefGoogle Scholar
  18. 18.
    Liu AP, Ueda K (1996) The absorption characteristics of circular offset and rectangular double-clad fibers. Opt Commun 132:511ADSCrossRefGoogle Scholar
  19. 19.
    Muendel MH (1996) Optimal inner cladding shapes for double-clad fiber lasers. Lasers and electro-optics conference (CLEO 96), 209Google Scholar
  20. 20.
    Liu AP, Ueda K (1996) Propagation losses of pump light in rectangular double-clad fibers. Opt Eng 35:3130ADSCrossRefGoogle Scholar
  21. 21.
    Goldberg L, Koplow J (1999) “High power side-pumped Er/Yb doped fiber amplifier,” OFC/ IOOC’99. Technical Digest 2:21Google Scholar
  22. 22.
    Koplow JP, Moore SW, Kliner DAV (2003) A new method for side pumping of double-clad fiber sources. IEEE J Quantum Elect 39:529ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Wang B, Mies E (2009) Review of fabrication techniques for fused fiber components for fiber lasers. SPIE photonic West 09, Fiber lasers VI: technology, systems, and applicationsGoogle Scholar
  25. 25.
    Farrow RL, Kliner DAV, Schrader PE, Hoops AA, Moore SW, Hadley GR, Schmitt RL (2006) High-peak-power (>1.2 MW) pulsed fiber amplifier. SPIE Photonics West paper 6102–22Google Scholar
  26. 26.
    Teodoro FD, Brooks CD (2005) 1.1 MW peak-power, 7 W average-power, high spectral brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Opt Lett 30:2694ADSCrossRefGoogle Scholar
  27. 27.
    Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J (2016) 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express 24:12063ADSCrossRefGoogle Scholar
  28. 28.
    Shiraki K, Ohashi M (1996) SBS threshold of a fiber with a Brillouin frequency shift distribution. J Lightwave Technol 14:50ADSCrossRefGoogle Scholar
  29. 29.
    Liu AP (2006) Novel SBS suppression scheme for high power fiber amplifiers. Proc SPIE 6102:1Google Scholar
  30. 30.
    Wang Y (2004) Heat dissipation in kilowatt fiber power amplifiers. IEEE J Quantum Elect 40:731ADSCrossRefGoogle Scholar
  31. 31.
    Jäger M, Caplette S, Verville P, Villeneuve A (2005) Fiber lasers and amplifiers with reduced optical nonlinearities employing large mode area fibers. Proc SPIE 5971:59710N-1Google Scholar
  32. 32.
    Payne DN, Jeong Y, Nilsson J, Sahu JK, Soh DBS, Alegria C, Dupriez P, Codemard CA, Philippov VN, Hernandez V, Horley R, Hickey L, Wanzcyk L, Chryssou CE, Alvarez-Chavez JA, Turner PW (2005) Kilowatt class single-frequency fiber sources (invited paper). Proc SPIE 5709:133ADSCrossRefGoogle Scholar
  33. 33.
    Agrawal GP (1989) Nonlinear fiber optics. Academic Press, San DiegozbMATHGoogle Scholar
  34. 34.
    Brown DC, Hoffman HJ (2001) Thermal stress and thermo optic effects in high average power double-clad silica fiber lasers. IEEE J Quantum Elect 37(183):207–217ADSCrossRefGoogle Scholar
  35. 35.
    Li J, Duan K, Wang Y, Cao X, Zhao W, Guo Y, Lin X (2008) Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers. J Mod Opt 55:459ADSCrossRefGoogle Scholar
  36. 36.
    Yan P, Xu A, Gong M (2006) Numerical analysis of temperature distributions in Yb doped double-clad fiber lasers with consideration of radiative heat transfer. Opt Eng 45:124201–124201ADSCrossRefGoogle Scholar
  37. 37.
    Guillaume CG, Mollier J-C (2005) Evidence of thermal effects in a high-power Er3+-Yb3+ fiber laser. Opt Lett 30:3030ADSCrossRefGoogle Scholar
  38. 38.
    Smith AV, Do BT, Soderlund M (2007) Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb3+ doped fused silica. Proc SPIE 6453:645317–645311CrossRefGoogle Scholar
  39. 39.
    Smith AV, Hadley GR, Farrow RL, Do BT (2008) Nonlinear optical limits to power in fiber amplifiers. OSA/CLEO/QELS, CFR2Google Scholar
  40. 40.
    Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tunnermann A (2007) The rising power of fiber lasers and amplifiers. IEEE J Sel Top Quant Electron 13:537ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations