• Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)


Nowadays fiber lasers are the first choice for diverse scientific and industrial applications, thanks to their excellent beam quality, high efficiency, flexible and compact structure, and being engineerable to operate in various regimes through leveraging linear and nonlinear effects in optical fiber. One of the most important operating manners of fiber laser is the single longitudinal mode oscillation, which has been intensively studied over the past three decades, owing to the crucial demands of a laser source with high-stable single-frequency operation, narrow linewidth, low noise, scalable to high-output power, and compact and robustness structure. In this chapter, we first give a brief introduction of the development history of fiber lasers, as well as the main components that form a typical fiber laser. Then the current development status of fiber lasers is discussed, and in the last part, the importance of single-frequency fiber lasers is emphasized.


  1. 1.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493ADSCrossRefGoogle Scholar
  2. 2.
    Hecht J (2010) Short history of laser development. Opt Eng 49:91002CrossRefGoogle Scholar
  3. 3.
    Svelto O, Hanna DC (2010) Principles of lasers, 5th edn. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Snitzer E (1961) Optical maser action of Nd+3 in barium crown glass. Phys Rev Lett 7:444ADSCrossRefGoogle Scholar
  5. 5.
    Koester CJ, Snitzer E (1964) Amplification in a fiber laser. Appl Opt 3:1182ADSCrossRefGoogle Scholar
  6. 6.
    Desurvire E, Simpson JR, Becker PC (1987) High-gain erbium-doped traveling-wave fiber amplifier. Opt Lett 12:888ADSCrossRefGoogle Scholar
  7. 7.
    Taga H, Yoshida Y, Edagawa N, Yamamoto S, Wakabayashi H (1990) 459 km, 2.4 Gbit/s four wavelength multiplexing optical fiber transmission experiment using six Er-doped fibre amplifiers. Electron Lett 26:500CrossRefGoogle Scholar
  8. 8.
    Buck JA (2004) Fundamentals of optical fibers. Wiley, HobokenGoogle Scholar
  9. 9.
    Seddon AB, Tang Z, Furniss D, Sujecki S, Benson TM (2010) Progress in rare-earth-doped mid-infrared fibre lasers. Opt Express 18:26704ADSCrossRefGoogle Scholar
  10. 10.
    Jackson SD (2012) Towards high-power mid-infrared emission from a fiber laser. Nature Photon 6:423ADSCrossRefGoogle Scholar
  11. 11.
    Funk DS, Carlson JW, Eden JG (1994) Ultraviolet (381 nm), room temperature laser in neodymium-doped fluorozirconate fibre. Electron Lett 30:1859CrossRefGoogle Scholar
  12. 12.
    Mizrahi V, DiGiovanni DJ, Atkins RM, Grubb SG, Park Y, Delavaux J (1993) Stable single-mode erbium fiber-grating laser for digital communication. J Lightwave Technol 11:2021ADSCrossRefGoogle Scholar
  13. 13.
    Pask HM, Carman RJ, Hanna DC, Tropper AC, Mackechnie CJ, Barber PR, Dawes JM (1995) Ytterbium-doped silica fiber lasers-versatile sources for the 1-1.2 μm region. IEEE J Sel Top Quantum Electron 1:2ADSCrossRefGoogle Scholar
  14. 14.
    Hanna DC, Jauncey IM, Percival RM, Perry IR, Smart RG, Suni PJ, Townsend JE, Tropper AC (1988) Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electron Lett 24:1222ADSCrossRefGoogle Scholar
  15. 15.
    Dianov EM, Dvoyrin VV, Mashinskii VM, Umnikov AA, Yashkov MV, Guryanov AN (2005) CW bismuth fibre laser. Quantum Electron 35:1083ADSCrossRefGoogle Scholar
  16. 16.
    Hanna DC, Percival RM, Smart RG, Townsend JE, Tropper AC (1989) Continuous-wave oscillation of holmium-doped silica fibre laser. Electron Lett 25:593CrossRefGoogle Scholar
  17. 17.
    Jackson SD (2003) Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl Phys Lett 83:1316ADSCrossRefGoogle Scholar
  18. 18.
    Baney DM, Rankin G, Chang K (1996) Blue Pr3+-doped ZBLAN fiber upconversion laser. Opt Lett 21:1372ADSCrossRefGoogle Scholar
  19. 19.
    Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15:1263ADSCrossRefGoogle Scholar
  20. 20.
    Giles CR, Desurvire E (1991) Modeling erbium-doped fiber amplifiers. J Lightwave Technol 9:271ADSCrossRefGoogle Scholar
  21. 21.
    Henderson-Sapir O, Munch J, Ottaway DJ (2016) New energy-transfer upconversion process in Er3+: ZBLAN mid-infrared fiber lasers. Opt Express 24:6869ADSCrossRefGoogle Scholar
  22. 22.
    Stiles E (2009) New developments in IPG fiber laser technology. In: Proceedings of the 5th international workshop on fiber lasersGoogle Scholar
  23. 23.
  24. 24.
    Eidam T, Hanf S, Seise E, Andersen TV, Gabler T, Wirth C, Schreiber T, Limbert J, Tunnermann A (2010) Femtosecond fiber CPA system emitting 830 W average output power. Opt Lett 35:94ADSCrossRefGoogle Scholar
  25. 25.
    Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tunnermann A (2012) 26 mJ, 130 W Q-switched fiber laser system with near-diffraction-limited beam quality. Opt Lett 37:1073ADSCrossRefGoogle Scholar
  26. 26.
    Agrawal G (2012) Nonlinear fiber optics, Optics and photonics, 5th edn. Academic, WalthamzbMATHGoogle Scholar
  27. 27.
    Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A (2010) Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat Photon 4:33ADSCrossRefGoogle Scholar
  28. 28.
    Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J, Tünnermann A (2015) Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength. Opt Lett 40:5160ADSCrossRefGoogle Scholar
  29. 29.
    Petersen CR, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z (2014) Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon 8:830ADSCrossRefGoogle Scholar
  30. 30.
    Li C, Xu S, Huang X, Xiao Y, Feng Z, Yang C, Zhou K, Lin W, Gan J, Yang Z (2015) All-optical frequency and intensity noise suppression of single-frequency fiber laser. Opt Lett 40:1964ADSCrossRefGoogle Scholar
  31. 31.
    Zhao Q, Xu S, Zhou K, Yang C, Li C, Feng Z, Peng M, Deng H, Yang Z (2016) Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser. Opt Lett 41:1333ADSCrossRefGoogle Scholar
  32. 32.
    Ward BG (2015) Maximizing power output from continuous-wave single-frequency fiber amplifiers. Opt Lett 40:542ADSCrossRefGoogle Scholar
  33. 33.
    Ball GA, Morey WW, Glenn WH (1991) Standing-wave monomode erbium fiber laser. IEEE Photon Technol Lett 3:613ADSCrossRefGoogle Scholar
  34. 34.
    Radic S (2010) Optical communications: coherent regeneration. Nature Photon 4:669ADSCrossRefGoogle Scholar
  35. 35.
    Diaz S, Abad S, Lopez-Amo M (2008) Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification. Laser & Photon Rev 2:480ADSCrossRefGoogle Scholar
  36. 36.
    Chou CW, Hume DB, Rosenband T, Wineland DJ (2010) Optical clocks and relativity. Science 329:1630ADSCrossRefGoogle Scholar
  37. 37.
    Eyler EE (2011) Precision, not power. Science 333:164ADSCrossRefGoogle Scholar
  38. 38.
    Adhikari RX (2014) Gravitational radiation detection with laser interferometry. Rev Mod Phys 86:121ADSCrossRefGoogle Scholar
  39. 39.
    Liu Z, Zhou P, Wang X, Ma Y, Xu X (2013) Kilowatt coherent beam combining of high-power fiber amplifiers using single-frequency dithering techniques. In: Brignon A (ed) Coherent laser beam combining. Wiley, Weinheim, p 75CrossRefGoogle Scholar
  40. 40.
    Massey GA, Oshman MK, Targ R (1965) Generation of single-frequency light using the FM laser. Appl Phys Lett 6:10ADSCrossRefGoogle Scholar
  41. 41.
    Zubarev JG, Mulikov VF (1972) Single-frequency Nd: glass laser under non-spiking free oscillation and Q-switched conditions. Sov J Quantum Electron 2:207ADSCrossRefGoogle Scholar
  42. 42.
    Owyoung A, Hadley GR, Esherick P, Schmitt RL, Rahn LA (1985) Gain switching of a monolithic single-frequency laser-diode-excited Nd: YAG laser. Opt Lett 10:484ADSCrossRefGoogle Scholar
  43. 43.
    Kobayashi K, Mito I (1988) Single-frequency and tunable laser diodes. J Lightwave Tech 6:1623ADSCrossRefGoogle Scholar
  44. 44.
    Bamford DJ, Dyer MJ, Bischel WK (1987) Single-frequency laser measurements of two-photon cross sections and Doppler-free spectra for atomic oxygen. Phys Rev A 36:3497ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations