Advertisement

The Importance of Fluoro and Hydroxyl Substitutions in Brassinosteroids for Shooting-Control: The Use of In Vitro-Grown Shoots as Test Systems

  • Adaucto B. Pereira-NettoEmail author
Chapter

Abstract

Biologically active brassinosteroids (BRs) induce a broad spectrum of responses, including stimulation of longitudinal growth of tissues via cell elongation and division, besides stimulation of vascular differentiation, the last one a developmental process critical for shoot elongation. We have been using in vitro-grown plants, especially the marubakaido apple rootstock, as test systems to probe into the ability of BRs, mainly new synthetic analogs, to control shooting. Replacement of 5α-H or 3α-OH groups of the steroidal structure of BRs by 5α-F, 3α-F or 5α-OH groups, respectively, has led to significant changes in the abilities of parent compounds such as homocastasterone to control shoot formation and their further elongation, being the effect species and organ-specific, besides being also dependent on the type, i.e., hydroxy or fluoro, position of the substitution. In this chapter, it will also be discussed how treatment of in vitro-grown shoots with new synthetic BR analogs has helped to: (1) Enhance our understanding about the relevance of selected functional groups for the BRs’s action mechanism(s); (2) Get an insight into the morphological responses of shoots, grown in vitro, to the application of BRs and synthetic analogs; (3) Improve micropropagation techniques for clonal propagation, especially of woody species, in which new shoot formation and its further elongation is typically a constrain for efficient micropropagation; (4) Guide the development of novel BR analogs for higher activity, at a lower cost.

Keywords

Malus prunifolia Marubakaido Rootstock, Micropropagation Brassinosteroid analog 

References

  1. Galagovsky, L. R., Gros, E. G., & Ramírez, J. A. (2001). Synthesis and bioactivity of natural and C-3 fluorinated biosynthetic precursors of 28-homobrassinolide. Phytochemistry, 58, 973–980.CrossRefGoogle Scholar
  2. Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A., & Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474, 467–471.CrossRefGoogle Scholar
  3. Joo, S. H., Jang, M. S., Kim, M. K., Lee, J. E., & Kim, S. K. (2015). Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry, 111, 84–90.CrossRefGoogle Scholar
  4. Khripach, V., Zhabinskii, V., & de Groot, A. (2000). Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Annals of Botany, 86, 441–447.CrossRefGoogle Scholar
  5. Lei, B., Heng, N., Dang, X., Liu, J., Yao, X., & Zhang, C. (2017). Structure based in silico identification of potentially non-steroidal brassinosteroids mimics. Molecular Biosystems, 13, 1364–1369.CrossRefGoogle Scholar
  6. Liebman, J. F. (1988). Fluorine chemistry without fluorine: Substituent effects and empirical mimicry. In J. F. Liebman, A. Greenberg, & W. R. Dolbier Jr. (Eds.), Fluoring containing molecules structure, reactivity, synthesis and applications (pp. 310–328). New York: VCH.Google Scholar
  7. Liu, J., Zhang, D., Sun, X., Ding, T., Lei, B., & Zhang, C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1–17.CrossRefGoogle Scholar
  8. Pereira-Netto, A. B., Schaefer, S., Galagovsky, L., & Ramírez, J. (2003). Brassinosteroid-driven modulation of stem elongation and apical dominance: Applications in micropropagation. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: Bioactivity and crop productivity (1st ed., pp. 129–157). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  9. Pereira-Netto, A. B., Carvalho-Oliveira, M. M. C., Ramírez, J. A., & Galagovsky, L. R. (2006a). Shooting control in Eucalyptus grandis × E. urophylla hybrid: Comparative effects of 28-homocastasterone and a 5α-monofluoro analog. Plant Cell Tissue and Organ Culture, 86, 329–335.CrossRefGoogle Scholar
  10. Pereira-Netto, A. B., Cruz-Silva, C. T. A., Schaefer, S., Ramírez, J. A., & Galagovsky, L. R. (2006b). Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees: Structure and Function, 20, 286–291.CrossRefGoogle Scholar
  11. Pereira-Netto, A. B., Roessner, U., Fujioka, S., Bacic, A., Asami, T., Yoshida, S., & Clouse, S. D. (2009). Shooting control by brassinosteroids: Metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiology, 29, 607–620.CrossRefGoogle Scholar
  12. Pereira-Netto, A. B., Schaefer, S., Galagovsky, L. R., & Ramirez, J. A. (2012). Brassinosteroid-driven stimulation of shoot formation and elongation: Application in micropropagation. In A. B. Pereira-Netto (Ed.), Brassinosteroids: Practical applications in agriculture and human health (pp. 26–34). Sharjah: Bentham Scientific Books.CrossRefGoogle Scholar
  13. Pereira-Netto, A. B., Galagovsky, L. R., & Ramirez, J. A. (2019). Alpha monofluoro substitution at C5 in homotyphasterol enhances shoot production and multiplication rate of in vitro-grown marubakaido apple rootstock shoots. Trees, in press.Google Scholar
  14. Ramirez, J. A., Centurion, O. M. T., Gros, E. G., & Galagovsky, L. R. (2000). Synthesis and bioactivity evaluation of brassinosteroid analogs. Steroids, 65, 329–337.CrossRefGoogle Scholar
  15. Schaefer, S., Medeiro, A. S., Ramirez, J. A., Galagovsky, L. R., & Pereira-Netto, A. B. (2002). Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Reports, 20, 1093–1097.CrossRefGoogle Scholar
  16. She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z. Y., & Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472–476.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Botany-SCBParaná Federal UniversityCuritibaBrazil

Personalised recommendations