Advertisement

Anticancer Potential of Brassinosteroids

  • Olesya V. Panibrat
  • Vladimir N. Zhabinskii
  • Vladimir A. KhripachEmail author
Chapter

Abstract

In recent years, it was shown that brassinosteroids (BS) exert their effects not only on plants but also on animals and man. Eventually, some of these effects allowed considering BS as potential anticarcinogenic agents. The background for searching new chemotherapeutic agents among representatives of this group of phytohormones is their antiproliferative activity shown on a number of cancer cell lines, their ability to inhibit angiogenesis, and low cytotoxicity to normal cells. A higher efficiency was found for some synthetic derivatives of BS. It is believed that BS are involved in the regulation of the cell cycle and induce apoptosis through the pathways independent of androgenic and estrogenic receptors. However, in general, the molecular mechanism of action of BS remains largely unclear. Nowadays, BS and their anticarcinogenic properties are actively studied in many laboratories worldwide. The purpose of this review is to analyze and summarize the data obtained on the topic by our research group. Among various aspects of BS anticancer activity, their cytotoxicity in cancer cells, participation of reactive oxygen species in BS-mediated death of tumor cells, and BS inhibition of procarcinogen activation will be discussed in more detail.

Keywords

Brassinosteroids Cancer Cell Viability Intracellular ROS Level Procarcinogen Activation 

References

  1. Andreeva, O., Savochka, O., Shcherbinin, D., Zhabinskii, V., Khripach, V., & Scherbakov, A. (2018). Biological activities of novel brassinosteroid analogues in breast cancer cells. ESMO Open, 3(Suppl 2), A200.Google Scholar
  2. Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., & Khripach, V. A. (2003). Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 63, 771–776.CrossRefGoogle Scholar
  3. Castell, J. V., Donato, M. T., & Gomez-Lechon, M. J. (2005). Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Experimental and Toxicologic Pathology, 57, 189–204.CrossRefGoogle Scholar
  4. Chaudhary, A., & Willett, K. L. (2006). Inhibition of human cytochrome CYP 1 enzymes by flavonoids of St. John’s wort. Toxicology, 217, 194–205.CrossRefGoogle Scholar
  5. Chen, X., Zhong, Z., Xu, Z., Chen, L., & Wang, Y. (2010). 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radical Research, 44, 587–604.CrossRefGoogle Scholar
  6. Coskun, D., Obakan, P., Arisan, E. D., Çoker-Gürkan, A., & Palavan-Ünsal, N. (2015). Epibrassinolide alters PI3K/MAPK signaling axis via activating Foxo3a-induced mitochondria-mediated apoptosis in colon cancer cells. Experimental Cell Research, 338, 10–21.CrossRefGoogle Scholar
  7. Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100, 72–79.CrossRefGoogle Scholar
  8. Czarnocka, W., & Karpinski, S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology & Medicine.  https://doi.org/10.1016/j.freeradbiomed.2018.01.011.
  9. de Weille, J., Fabre, C., & Bakalara, N. (2013). Oxysterols in cancer cell proliferation and death. Biochemical Pharmacology, 86, 154–160.CrossRefGoogle Scholar
  10. Drozdov, F. V., Mekhtiev, A. P., Morozevich, G. E., Timofeev, V. P., & Misharin, A. Y. (2007). Cytotoxic derivatives of (22R,23R)-dihydroxystigmastane. Russian Journal of Bioorganic Chemistry, 33, 326–333.CrossRefGoogle Scholar
  11. Eignerova, B., Slavıkova, B., Budesınsky, M., Dracınsky, M., Klepetarova, B., Stastna, E., & Kotora, M. (2009). Synthesis of fluorinated brassinosteroids based on alkene cross-metathesis and preliminary biological assessment. Journal of Medicinal Chemistry, 52, 5753–5757.CrossRefGoogle Scholar
  12. Franek, F., Eckschlager, T., & Kohout, L. (2003). 24-Epibrassinolide at subnanomolar concentrations modulates growth and production characteristics of a mouse hybridoma. Collection of Czechoslovak Chemical Communications, 68, 2190–2200.CrossRefGoogle Scholar
  13. Fujii-Kuriyama, Y., & Mimura, J. (2005). Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochemical and Biophysical Research Communications, 338, 311–317.CrossRefGoogle Scholar
  14. Gan, C., Cui, J., Huang, Y., Jia, L., & Wei, W. (2012). Synthesis and antiproliferative activity of some steroidal lactone compounds. Steroids, 77, 255–259.CrossRefGoogle Scholar
  15. Gruszka, D. (2013). The brassinosteroid signaling pathway – new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14, 8740–8774.CrossRefGoogle Scholar
  16. Hayat, S., & Ahmad, A. (2003). Brassinosteroids: Bioactivity and crop production. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  17. Hayat, S., & Ahmad, A. (2011). Brassinosteroids: A class of plant hormone. Dordrecht: Springer.CrossRefGoogle Scholar
  18. Hoffmannová, L., Steigerová, J., & Strnad, M. (2012). Anticancer activities of brassinosteroids. In A. B. Pereira-Netto (Ed.), Brassinosteroids: Practical applications in agriculture and human health (pp. 84–93). Sharjah: Bentham Science Publishers.CrossRefGoogle Scholar
  19. Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers, 6, 1769–1792.CrossRefGoogle Scholar
  20. Karpets, Y. V., & Kolupaev, Y. E. (2018). Participation of nitric oxide in 24-epibrassinolide-induced heat resistance of wheat coleoptiles: Functional interactions of nitric oxide with reactive oxygen species and Ca ions. Russian Journal of Plant Physiology, 65, 177–185.CrossRefGoogle Scholar
  21. Khripach, V. A., Zhabinskii, V. N., & de Groot, A. (1999). Brassinosteroids. A new class of plant hormones. San Diego: Academic.Google Scholar
  22. Khripach, V. A., Zhabinskii, V. N., Gulyakevich, O. V., Konstantinova, O. V., Misharin, A. Y., Mekhtiev, A. R., Timofeev, V. P., & Tkachev, Y. V. (2010). Synthesis of secasterol and 24-episecasterol and their toxicity for MCF-7 cells. Russian Journal of Bioorganic Chemistry, 36, 746–754.CrossRefGoogle Scholar
  23. Khripach, V. A., Zhabinskii, V. N., Ermolovich, Y. V., Gulyakevich, O. V., Mekhtiev, A. R., & Karalkin, P. A. (2012). Synthesis and biological activity of the probable biosynthetic precursors of 241 norbrassinolide. Russian Journal of Bioorganic Chemistry, 38, 438–446.CrossRefGoogle Scholar
  24. Kisselev, P. A., Panibrat, O. V., Sysa, A. G., Anisovich, M. V., Zhabinskii, V. N., & Khripach, V. A. (2016). Oxidative stress as one of the possible ways of anticancer effects of brassinosteroids. Doklady of the National Academy of Science of Belarus, 60, 73–77.Google Scholar
  25. Kisselev, P. A., Panibrat, O. V., Sysa, A. R., Anisovich, M. V., Zhabinskii, V. N., & Khripach, V. A. (2017). Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids. Steroids, 117, 11–15.CrossRefGoogle Scholar
  26. Knerr, S., Schaefer, J., Both, S., Mally, A., Dekant, W., & Schrenk, D. (2006). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450s alter the formation of reactive oxygen species in liver cells. Molecular Nutrition & Food Research, 50, 378–384.CrossRefGoogle Scholar
  27. Korinkova, P., Bazgier, V., Oklestkova, J., Rarova, L., Strnad, M., & Kvasnica, M. (2017). Synthesis of novel aryl brassinosteroids through alkene cross-metathesis and preliminary biological study. Steroids, 127, 46–55.CrossRefGoogle Scholar
  28. Kvasnica, M., Oklestkova, J., Bazgier, V., Rarova, L., Berka, K., & Strnad, M. (2014). Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain. Steroids, 85, 58–64.CrossRefGoogle Scholar
  29. Kvasnica, M., Oklestkova, J., Bazgier, V., Rarova, L., Korinkova, P., Mikulik, J., Budesinsky, M., Beres, T., Berka, K., Lu, Q., Russinova, E., & Strnad, M. (2016). Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Organic & Biomolecular Chemistry, 14, 8691–8701.CrossRefGoogle Scholar
  30. Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44, 479–496.CrossRefGoogle Scholar
  31. Malíková, J., Swaczynová, J., Kolář, Z., & Strnad, M. (2008). Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry, 69, 418–426.CrossRefGoogle Scholar
  32. Massey, J. B. (2006). Membrane and protein interactions of oxysterols. Current Opinion in Lipidology, 17, 296–301.CrossRefGoogle Scholar
  33. Misharin, A. Y., Mehtiev, A. R., Morozevich, G. E., Tkachev, Y. V., & Timofeev, V. P. (2008). Synthesis and cytotoxicity evaluation of 22,23-oxygenated stigmastane derivatives. Bioorganic & Medicinal Chemistry, 16, 1460–1473.CrossRefGoogle Scholar
  34. Misharin, A. Y., Mehtiev, A. R., Zhabinskii, V. N., Khripach, V. A., Timofeev, V. P., & Tkachev, Y. V. (2010). Toxicity of (22R,23R)-22,23-dihydroxystigmastane derivatives to cultured cancer cells. Steroids, 75, 287–294.CrossRefGoogle Scholar
  35. Obakan, P., Arisan, E. D., Calcabrini, A., Agostinelli, E., Bolkent, Ş., & Palavan-Unsal, N. (2014a). Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids, 46, 553–564.CrossRefGoogle Scholar
  36. Obakan, P., Arisan, E. D., Coker-Gurkan, A., & Palavan-Unsal, N. (2014b). Epibrassinolide-induced apoptosis regardless of p53 expression via activating polyamine catabolic machinery, a common target for androgen sensitive and insensitive prostate cancer cells. The Prostate, 74, 1622–1633.CrossRefGoogle Scholar
  37. Obakan, P., Barrero, C., Coker-Gurkan, A., Arisan, E. D., Merali, S., & Palavan-Unsal, N. (2015). SILAC-based mass spectrometry analysis reveals that epibrassinolide induces apoptosis via activating endoplasmic reticulum stress in prostate cancer cells. PLoS One, 10, e0135788.CrossRefGoogle Scholar
  38. Obakan-Yerlikaya, P., Arisan, E. D., Coker-Gurkan, A., Adacan, K., Ozbey, U., Somuncu, B., Baran, D., & Palavan-Unsal, N. (2017). Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells. Molecular Carcinogenesis, 56, 1603–1619.CrossRefGoogle Scholar
  39. Oklestkova, J., Rárová, L., Kvasnica, M., & Strnad, M. (2015). Brassinosteroids: Synthesis and biological activities. Phytochemistry Reviews, 14(6), 1053–1072.CrossRefGoogle Scholar
  40. Ouyang, L., Luo, Y., Tian, M., Zhang, S. Y., Lu, R., Wang, J. H., Kasimu, R., & Li, X. (2014). Plant natural products: From traditional compounds to new emerging drugs in cancer therapy. Cell Proliferation, 47, 506–515.CrossRefGoogle Scholar
  41. Panibrat, O. V., Shabunya, P. S., Fatykhava, S. A., Zhabinskii, V. N., & Kisselev, P. A. (2018a). The anticarcinogenic activity of brassinosteroids in tumor cells of the Hep G2 line. Doklady of the National Academy of Science of Belarus, 62, 66–72.CrossRefGoogle Scholar
  42. Panibrat, O. V., Zhabinskii, V. N., & Khripach, V. A. (2018b). Study of the effects of brassinosteroids in combination with cisplatin on cancer cell growth. In 24th conference on isoprenoids, Bialystok, September 9–12, 103.Google Scholar
  43. Pavek, P., & Dvorak, Z. (2008). Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Current Drug Metabolism, 9, 129–143.CrossRefGoogle Scholar
  44. Pereira-Netto, A. B. (2012). Brassinosteroids: Practical applications in agriculture and human health. Sharjah: Bentham Science Publishers.CrossRefGoogle Scholar
  45. Rárová, L., Zahler, S., Liebl, J., Kryštof, V., Sedlák, D., Bartůnĕk, P., Kohout, L., & Strnad, M. (2012). Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids, 77, 1502–1509.CrossRefGoogle Scholar
  46. Rárová, L., Steigerová, J., Kvasnica, M., Bartůněk, P., Křížová, K., Chodounská, H., Kolář, Z., Sedlák, D., Oklestkova, J., & Strnad, M. (2016). Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes. The Journal of Steroid Biochemistry and Molecular Biology, 159, 154–169.CrossRefGoogle Scholar
  47. Rarova, L., Sedlak, D., Oklestkova, J., Steigerova, J., Liebl, J., Zahler, S., Bartunek, P., Kolar, Z., Kohout, L., Kvasnica, M., & Strnad, M. (2018). The novel brassinosteroid analog BR4848 inhibits angiogenesis in human endothelial cells and induces apoptosis in human cancer cells in vitro. The Journal of Steroid Biochemistry and Molecular Biology, 178, 263–271.CrossRefGoogle Scholar
  48. Remesh, A. (2012). Toxicities of anticancer drugs and its management. International Journal of Basic and Clinical Pharmacology, 1, 2–12.CrossRefGoogle Scholar
  49. Sadava, D., & Kane, S. E. (2017). The effect of brassinolide, a plant steroid hormone, on drug resistant small-cell lung carcinoma cells. Biochemical and Biophysical Research Communications, 493, 783–787.CrossRefGoogle Scholar
  50. Sakurai, A., Yokota, T., & Clouse, S. D. (1999). Brassinosteroids: Steroidal plant hormones. Berlin: Springer.Google Scholar
  51. Schroepfer, G. J. (2000). Oxysterols: Modulators of cholesterol metabolism and other processes. Physiological Reviews, 80, 361–554.CrossRefGoogle Scholar
  52. Schwarz, D., Kisselev, P., Cascorbi, I., Schunck, W. H., & Roots, I. (2001). Differential metabolism of benzopyrene and benzopyrene-7,8-dihydrodiol by human CYP1A1 variants. Carcinogenesis, 22, 453–459.CrossRefGoogle Scholar
  53. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 26.CrossRefGoogle Scholar
  54. Steigerová, J., Oklestkova, J., Levková, M., Rárová, L., Kolář, Z., & Strnad, M. (2010). Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chemico-Biological Interactions, 188, 487–496.CrossRefGoogle Scholar
  55. Swaczynová, J., Malíková, J., Hoffmannová, L., Kohout, L., & Strnad, M. (2006a). Anticancer properties of brassinosteroids. Planta Medica, 72, 066.CrossRefGoogle Scholar
  56. Swaczynová, J., Šíša, M., Hniličková, J., Kohout, L., & Strnad, M. (2006b). Synthesis, biological, immunological and anticancer properties of a new brassinosteroid ligand. Polish Journal of Chemistry, 80, 629–635.Google Scholar
  57. Sysa, A. G., Kiselev, P. A., Zhabinskii, V. N., & Khripach, V. A. (2010). Effect of the structure of the brassinosteroid side chain on monooxygenase activity of liver microsomes. Applied Biochemistry and Microbiology, 46, 23–27.CrossRefGoogle Scholar
  58. Sysa, A. G., Kisselev, P. A., Zhabinskii, V. N., & Khripach, V. A. (2011). The structure-function relationship in evaluating the antiproliferative activity of brassinosteroids against MCF-7 breast cancer cells. Bulletin of Foundation for Fundamental Research, 1, 56–63.Google Scholar
  59. Tompkins, L. M., & Wallace, A. D. (2007). Mechanisms of cytochrome P450 induction. Journal of Biochemical and Molecular Toxicology, 21, 176–181.CrossRefGoogle Scholar
  60. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108.Google Scholar
  61. Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews Drug Discovery, 8, 579–591.CrossRefGoogle Scholar
  62. Wu, Y. D., & Lou, Y. J. (2007). Brassinolide, a plant sterol from pollen of Brassica napus L., induces apoptosis in human prostate cancer PC-3 cells. Pharmazie, 62, 392–395.PubMedGoogle Scholar
  63. Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.CrossRefGoogle Scholar
  64. Yang, C. J., Zhang, C., Lu, Y. N., Jin, J. Q., & Wang, X. L. (2011). The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Molecular Plant, 4, 588–600.CrossRefGoogle Scholar
  65. Yin, Z., Deng, Z., Zhao, W., & Cao, Z. (2018). Searching synergistic dose combinations for anticancer drugs. Frontiers in Pharmacology, 9, 535.CrossRefGoogle Scholar
  66. Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138, 103–141.CrossRefGoogle Scholar
  67. Zhabinskii, V. N., Khripach, N. B., & Khripach, V. A. (2015). Steroid plant hormones: Effects outside plant kingdom. Steroids, 97, 87–97.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Olesya V. Panibrat
    • 1
  • Vladimir N. Zhabinskii
    • 1
  • Vladimir A. Khripach
    • 1
    Email author
  1. 1.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations