Brassinosteroids: The Promising Plant Growth Regulators in Horticulture

  • Barket Ali


Brassinosteroids (BS), a class of polyhydroxylated steroidal plant hormones were collectively named as ‘Brassins’ after their initial discovery from the pollen grains of Brassica napus. They occur in whole plant kingdom and almost all plant parts. Pollen and immature seeds are the richest sources of BS. A spectrum of physiological, biochemical and molecular responses in plants have been attributed to BS, which include shoot and root growth, fertility and seed germination, cell elongation, vascular differentiation, xylem formation in epicotyls, and also in the regulation of expression of several genes involved in xylem development. They also affect cotyledon growth, root elongation, leaf formation and growth, and plant biomass. Ethylene production is another important physiological response in plant that has been attributed to BS activity. They have also been found to protect plants from various abiotic and biotic stress factors, such as salt, temperature, water, heavy metals and pathogens. BS also enhance the yield of several cereals, legumes, oilseed crops and crops of horticultural importance. In horticultural crops, they favour fruit production and quality of the fruits. This chapter describes various studies wherein BS have been exploited to enhance the productivity of different horticultural crops. Most importantly, they are naturally occurring and eco-friendly, thus they can easily replace the hazardous chemicals.


Brassinolide Brassinosteroids 24-Epibrassinolide Ethylene Flowering Fruits quality 28-Homobrassinolide Horticulture 


  1. Adam, G., & Schneider, B. (1999). Uptake, transport and metabolism. In A. Sakurai, T. Yokota, & S. D. Clouse (Eds.), Brassinosteroids – Steroidal plant hormones (pp. 113–136). Tokyo: Springer.Google Scholar
  2. Aghdam, M. S., Asghari, M., Farmani, B., Mohayeji, M., & Moradbeygi, H. (2012). Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Scientia Horticulturae, 144, 116–120.CrossRefGoogle Scholar
  3. Alam, M. M., Hayat, S., Ali, B., & Ahmad, A. (2007). Effect of 28-homobrassinolide treatment on nickel in Brassica juncea. Photosynthetica, 45, 139–142.Google Scholar
  4. Ali, B., Hayat, S., & Ahmad, A. (2005). Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. General and Applied Plant Physiology, 31, 55–63.Google Scholar
  5. Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110, 267–273.Google Scholar
  6. Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L). Environmental and Experimental Botany, 59, 217–223.Google Scholar
  7. Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008a). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.CrossRefGoogle Scholar
  8. Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008b). r24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.PubMedGoogle Scholar
  9. Aristeo-Cortes, P., Terrazas, T., Colinas León, T., & Larqué-Saavedra, A. (2003). Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Scientia Horticulturae, 97, 65–73.CrossRefGoogle Scholar
  10. Asatova, S. S. (1991). Effect of epibrassinolide on growth and development of vegetables. In Conference on brassinosteroids (2nd ed.). Minsk.Google Scholar
  11. Azpeitia, A., Chan, J., Saenz, L., & Oropeza, C. (2003). Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. The Journal of Horticultural Science and Biotechnol, 78, 591–596.CrossRefGoogle Scholar
  12. Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.CrossRefGoogle Scholar
  13. Balmush, G. T., Russu, M. M., & Karabdzhak. (1995). Effect of epibrassinolide on tomato growth and development. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., pp. 22–23). Minsk.Google Scholar
  14. Bieberach, C. Y., León, B., Centurión, O. T., Ramírez, J. A., Gros, E., & Galagovsky, L. (2000). Estudios preliminares sobre el efecto de dos brasinoesteroides sintéticos sobre el crecimiento in vitro de yuca, ñame y piña. Anales de la Asociación Química Argentina, 88, 1–7.Google Scholar
  15. Bobrick, A. O. (1995). Application of brassinosteroids in potato breeding. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., p. 23). Minsk.Google Scholar
  16. Bombarely, A., Merchante, C., Csukasi, F., Cruz-Rus, E., Caballero, J. L., Medina-Escobar, N., Blanco-Portales, R., Botella, M. A., MunozBlanco, J., Sanchez-Sevilla, J. F., & Valpuesta, V. (2010). Generation and analysis of ESTs from strawberry (Fragaria×ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics, 11, 503–510.CrossRefGoogle Scholar
  17. Chai, Y. M., Zhang, Q., Tian, L., Li, C. L., Ling, Y. X., Qin, L., & Shen, Y. Y. (2013). Brassinosteroid is involved in strawberry fruit ripening. Journal of Plant Growth Regulation, 69, 63–69.CrossRefGoogle Scholar
  18. Churikova, V. V., & Derevshchukov, S. N. (1997). Registration trials of the growth regulator “Epin” on tomato and cucumber. Technical report of Voronezh State University.Google Scholar
  19. Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.CrossRefGoogle Scholar
  20. Esposito, D., Komarnytsky, S., Shapses, S., & Raskin, I. (2011). Anabolic effect of plant brassinosteroid. The FASEB Journal, 25, 3708–3719.CrossRefGoogle Scholar
  21. Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58, 9–17.CrossRefGoogle Scholar
  22. Fedina, E. O., Karimova, F. G., Tarchevsky, I. A., & Khripach, V. A. (2008). Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes. Russian Journal of Plant Physiology, 55, 193–200.CrossRefGoogle Scholar
  23. Fu, F. Q., Mao, W. H., Shi, K., Zhou, Y. H., Asami, T., & Yu, J. Q. (2008). A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 59, 2299–2308.CrossRefGoogle Scholar
  24. Genma, T. (1987). Methods of cultivating potatos with brassinolide-containing yield enhancer. PCT Int Appl WO 88 04, 890 [C.a. 110, 187813].Google Scholar
  25. Gomes, M. M. A., Campostrini, E., Leal, N. R., Viana, A. P., Ferraz, T. M., Siqueira, L. N., Rosa, R. C. C., Netto, A. T., Nunez-Vazquez, M., & Zullo, M. A. T. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Science Horticulture, 110, 235–240.CrossRefGoogle Scholar
  26. Hategan, L., Godza, B., & Szekeresm. (2010). Regulation of brassinosteroids signalling. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 57–82). Dordrecht: Springer.Google Scholar
  27. Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.CrossRefGoogle Scholar
  28. Hola, D., Rothova, O., Kocova, M., Kohout, L., & Kvasnic, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.CrossRefGoogle Scholar
  29. Ikekawa, N., & Akutsu, T. (1987). Culturing method for spinach using brassinosteroid as growth promoters. Jpn. Kokai Tokkyo Koho. JP 63,239,201 [88,239,201] [C.A. 111, 52465].Google Scholar
  30. Ikekawa, N., & Nagai, T. (1987). Brassinosteroids fruiting hormones for melons. Jpn. Kokai Tokkyo Koho. JP 63,243,001 [88,243,0201] [C.A. 111, 129007].Google Scholar
  31. Iwahori, S., Tominaga, S., & Higuchi, S. (1990). Retardation of abscission of citrus leaf and fruitlet explants by brassinolide. Plant Growth Regulation, 9, 119–125.CrossRefGoogle Scholar
  32. Kang, Y. Y., & Guo, S. R. (2011). Role of brassinosteroids in horticultural crops. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 269–288). Dordrecht: Springer.CrossRefGoogle Scholar
  33. Kazakova, V. N., Karsunkina, N. P., & Sukhova, L. S. (1991). Effect of brassinolide and fusicoccin on potato productivity and tuber resistance to fungal diseases under storage. Izvestiia Timiryazevskoi sel’skokhoziaistvennoi Akademii, 0, 82–88.Google Scholar
  34. Kesy, J., Trzaskalsky, A., Galoch, E., & Kopcewicz, J. (2003). Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biologia Plantarum, 47, 597–600.CrossRefGoogle Scholar
  35. Khripach, V. A., Zhabinski, V. N., & de Groot, A. E. (1999). Practical applications and toxicology. In Brassinosteroids: A new class of plant hormones (pp. 325–345). London: Academic.CrossRefGoogle Scholar
  36. Korableva, N. P., Platonova, T. A., & Dogonadze, M. Z. (1998). Changes in ethylene biosynthesis in the meristems of potato tubers (Salanum tuberosum L.) under the action of brassinolide. Dokl. Akad. Nauk. Russia.Google Scholar
  37. Korableva, N. P., Platonova, T. A., Dogonadze, M. Z., & Evsunina, A. S. (2002). Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biologia Plantarum, 45, 39–43.CrossRefGoogle Scholar
  38. Kuraishi, S., Sakurai, N., Eun, J. S., & Sugiyama, K. (1991). Effect of brassinolide on level of indoleacetic acid and abscisic acid in squash hypocotyls. In H. G. Cuttler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and application (ACS symposium series) (Vol. 474, pp. 312–319). Washington, DC: American chemical Society.CrossRefGoogle Scholar
  39. Kurganskii, N. P. (1993). Application of “Apin” on sugar beet in 1991–1992. Technical report of experimental station on sugar beet. Belarus.Google Scholar
  40. Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathway. Planta, 213, 758–763.CrossRefGoogle Scholar
  41. Li, X., Ahammed, G. J., Li, Z. X., Zhang, L., Wei, J. P., Shen, C., Yan, P., Zhang, L. P., & Han, W. Y. (2016). Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Frontiers in Plant Science, 7, 1304. Scholar
  42. Lisso, J., Altmann, T., & Müssig, C. (2006). Metabolic changes in fruits of the tomatodx mutant. Phytochemistry, 67, 2232–2238.CrossRefGoogle Scholar
  43. Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., & Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 12, 105–115.CrossRefGoogle Scholar
  44. Mazzafera, P., & Zullo, M. A. T. (1990). Brassinosteroids on coffee. Bragantia, 49, 37–41.CrossRefGoogle Scholar
  45. Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., Kaneta, T., Kamiya, Y., Szekeres, M., & Boshop, G. J. (2005). Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42, 262–269.CrossRefGoogle Scholar
  46. Mori, K., Takematsu, T., Sakakibara, M., & Oshio, H. 1986. Homobrassinolide, and its production and use. US Patent. 4: 604,240.Google Scholar
  47. Mussig, C. (2005). Brassinosteroid-promoted growth. Plant Biology, 7, 110–117.CrossRefGoogle Scholar
  48. Nunez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.CrossRefGoogle Scholar
  49. Papadopoulou, E., & Grumet, R. (2005). Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. Horticultural Science, 40, 1763–1767.Google Scholar
  50. Peng, J., Tang, X., & Feng, H. (2004). Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Scientia Horticulturae, 101, 407–416.CrossRefGoogle Scholar
  51. Pereira-Netto, A., Cruz-Silva, C., Schaefer, S., Ramirez, J., & Galagovsky, L. (2006). Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees, 20, 286–291.CrossRefGoogle Scholar
  52. Ramos, L. C. S., Zullo, M. A. T., & Teixeira, J. P. F. (1987). Efeito de 24-epibrassinolídio em calos de Coffea stenophylla. In Proceedings of the 140 Congresso Brasileiro de Pesquisas Cafeeiras/1o Congresso Latinoamericano de Tecnologia Cafeeira (pp. 82–83). Campinas.Google Scholar
  53. Samira, I. M., Mansour-Gueddes, S. B., Dridi-Mouhandes, B., & Denden, M. (2012). 24-epibrassinolide enhances flower and fruit production of pepper (Capsicum annuum L.) under salt stress. Journal of Stress Physiology Biochemistry, 8, 224–233.Google Scholar
  54. Sasse, J. M. (2003). Physiological actions of brassinosteroids: An update. Plant Growth Regulation, 22, 276–288.CrossRefGoogle Scholar
  55. Savelieva, E. A., Goncharov, V. M., & Tseiko, Z. E. (1997). Effect of “Epin” on the crop and disease resistace of tomatoin green houses. Technical report of Gomel agricultural station, Belarus.Google Scholar
  56. Schaefer, S., Medeiro, S., Ramirez, J., Galagovsky, L., & Pereira-Netto, A. (2002). Brassinosteroid-driven enhancement of the in vitromultiplication rate for the marubakaido apple rootstock [Malus prunifolia(Willd.) Borkh]. Plant Cell Reports, 20, 1093–1097.CrossRefGoogle Scholar
  57. Schilling, G., Schiller, C., & Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities in sugar beet plants. In H. G. Cuttler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and application (ACS Symposium Series) (Vol. 474, pp. 208–219). Washington, DC: American chemical Society.CrossRefGoogle Scholar
  58. Schneider, B. (2002). Pathways and enzymes of brassinosteroid biosynthesis. In K. Esser, U. Lüttge, W. Beyschlag, & F. Hellwig (Eds.), Progress in botany (Vol. 63, pp. 286–306). Berlin: Springer.CrossRefGoogle Scholar
  59. Serna, M., Hernandez, F., Coll, F., Coll, Y., & Amoro, A. (2012). Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regulation, 68, 333–342.CrossRefGoogle Scholar
  60. Sirhindi, G. (2013). Brassinosteroids: Biosynthesis and role in growth, development, and thermotolerance responses. In G. R. Rout & A. B. Das (Eds.), Molecular stress physiology of plants (pp. 309–329). New Delhi: Springer.CrossRefGoogle Scholar
  61. Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids: Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.CrossRefGoogle Scholar
  62. Symons, G. M., Ross, J. J., Jager, C. E., & Reid, J. B. (2008). Brassinosteroid transport. Journal of Experimental Botany, 59, 17–24.CrossRefGoogle Scholar
  63. Taiz, L., & Zeiger, E. (2004). Plant physiology (pp. 607–611). Sunderland: Sinauer Associates.Google Scholar
  64. Takematsu, T., & Izumi, K. (1985). Acceleration of plant growth in cultured soil. Jpn Kokai Tokkyo Koho JP 62 04,205 [87 04,205] [C.A. 107, 72876].Google Scholar
  65. Tang, W., Deng, Z., & Wang, Z.-Y. (2010). Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology, 13, 27–33.CrossRefGoogle Scholar
  66. Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61, 843–847.CrossRefGoogle Scholar
  67. Vedeneev, A. N., Deeva, V. P., & Khripach, V. A. (1995). Effect of epibrassinolide on sugar beet. In Brassinosteroids – Biorational ecologically safe regulators of growth and productivity of plants (4th ed., p. 24). Minsk.Google Scholar
  68. Wang, Y. Q., Luo, W. H., & Zhao, Y. J. (1994). Effect of epibrassinolide on growth and fruit quality of water melon. Zhiwu Shenglixue Tangxun, 30, 423–425.Google Scholar
  69. Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nogues, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135–1143.CrossRefGoogle Scholar
  70. Yusuf, M., Fariduddin, Q., & Ahmad, A. (2012). 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology and Biochemistry, 57, 143–153.CrossRefGoogle Scholar
  71. Zaharah, S. S., Singh, Z., Symons, G. M., & Reid, J. B. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 31, 363–372.Google Scholar
  72. Zhu, Z., Zhang, Z., Qin, G., & Tian, S. (2010). Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 56, 50–55.CrossRefGoogle Scholar
  73. Zullo, M. A. T., & Adam, G. (2002). Brassinosteroid phytohormones – Structure, bioactivity and applications. Brazilian Journal of Plant Physiology, 14, 143–181.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Barket Ali
    • 1
  1. 1.Department of BotanyGovernment Degree College KishtwarKishtwarIndia

Personalised recommendations