Suppression of Back Energy Transfer by Energy Transfer Between Terbium Ions

  • Shun OmagariEmail author
Part of the Springer Theses book series (Springer Theses)


Suppression of back energy transfer is crucial in realizing efficient luminescent lanthanide complexes. However, the only practical method reported to this day is to raise the energy of the triplet excited state so that back energy transfer is energetically unfavorable, which limits the application where the absorbing wavelength of the organic ligands is important. This chapter explores a radically new strategy that focus on the yield of the back energy transfer as opposed to the rate constant of the back energy transfer. By utilizing energy transfer between lanthanide ions, which is a competitive process to back energy transfer, the contribution of back energy transfer can be suppressed. This chapter describes the theoretical background of this concept using kinetic analysis, and then the experimental confirmation of the proposal using [TbnGd9−n(µ-OH)10(Bu)16]NO3 (n = 0, 1, 2, 5, 8, 9). It is revealed that indeed the contribution of the back energy transfer is suppressed in this cluster, implying the potential of lanthanide clusters as functionalized and efficient luminescent material.


  1. 1.
    van der Ende BM, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095Google Scholar
  2. 2.
    Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201CrossRefGoogle Scholar
  3. 3.
    Shang Y, Hao S, Yang C, Chen G (2015) Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials 5:1782–1809CrossRefGoogle Scholar
  4. 4.
    Gautier R, Li X, Xia Z, Massuyeau F (2017) Two-step design of a single-doped white phosphor with high color rendering. J Am Chem Soc 139:1436–1439CrossRefGoogle Scholar
  5. 5.
    Starzak ME (1989) Mathematical methods in chemistry and physics. SpringerGoogle Scholar
  6. 6.
    Malta OL (2008) Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J Non Cryst Solids 354:4770–4776CrossRefGoogle Scholar
  7. 7.
    Kushida T (1973) Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. II. Comparison with experiments. J Phys Soc Jpn 34:1327–1333CrossRefGoogle Scholar
  8. 8.
    Aboshyan-Sorgho L, Nozary H, Aebischer A, Bünzli J-CG, Morgantini PY, Kittilstved KR, Hauser A, Eliseeva SV, Petoud S, Piguet C (2012) Optimizing millisecond time scale near-infrared emission in polynuclear chrome (III)–lanthanide (III) complexes. J Am Chem Soc 134:12675–12684CrossRefGoogle Scholar
  9. 9.
    Tobita S, Arakawa M, Tanaka I (1985) The paramagnetic metal effect on the ligand localized S1. apprx.fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J Phys Chem 89:5649–5654CrossRefGoogle Scholar
  10. 10.
    Yang Y, Li J, Liu X, Zhang S, Driesen K, Nockemann P, Binnemans K (2008) Listening to lanthanide complexes: determination of the intrinsic luminescence quantum yield by nonradiative relaxation. ChemPhysChem 9:600–606CrossRefGoogle Scholar
  11. 11.
    Casanova D, Llunell M, Alemany P, Alvarez S (2005) The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. Chem Eur J 11:1479–1494CrossRefGoogle Scholar
  12. 12.
    Pinsky M, Avnir D (1998) Continuous symmetry measures. 5. The classical polyhedra. Inorg Chem 37:5575–5582CrossRefGoogle Scholar
  13. 13.
    Lima NBD, Gonçalves SMC, Júnior SA, Simas AM (2013) A comprehensive strategy to boost the quantum yield of luminescence of europium complexes. Sci Rep 3:2395Google Scholar
  14. 14.
    Miyata K, Nakagawa T, Kawakami R, Kita Y, Sugimoto K, Nakashima T, Harada T, Kawai T, Hasegawa Y (2011) Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures. Chem Eur J 17:521–528CrossRefGoogle Scholar
  15. 15.
    Yanagisawa K, Nakanishi T, Kitagawa Y, Seki T, Akama T, Kobayashi M, Taketsugu T, Ito H, Fushimi K, Hasegawa Y (2015) Seven‐coordinate luminophores: brilliant luminescence of lanthanide complexes with C3v geometrical structures. Eur J Inorg Chem 2015:4769–4774CrossRefGoogle Scholar
  16. 16.
    Beitz JV (1994) f-State luminescence of trivalent lanthanide and actinide ions in solution. J Alloys Compd 207–208:41–50CrossRefGoogle Scholar
  17. 17.
    Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S, Williams RM, De Cola L, Pikramenou Z (2004) Highly luminescent, triple-and quadruple-stranded, dinuclear Eu, Nd, and Sm (III) lanthanide complexes based on bis-diketonate ligands. J Am Chem Soc 126:9413–9424CrossRefGoogle Scholar
  18. 18.
    Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield. J Lumin 75:149–169CrossRefGoogle Scholar
  19. 19.
    Miyata K, Konno Y, Nakanishi T, Kobayashi A, Kato M, Fushimi K, Hasegawa Y (2013) Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew Chem Int Ed 52:6413–6416CrossRefGoogle Scholar
  20. 20.
    Yanagisawa K, Kitagawa Y, Nakanishi T, Akama T, Kobayashi M, Seki T, Fushimi K, Ito H, Taketsugu T, Hasegawa Y (2017) Enhanced luminescence of asymmetrical seven‐coordinate EuIII complexes including LMCT perturbation. Eur J Inorg Chem 2017:3843–3848CrossRefGoogle Scholar
  21. 21.
    Omagari S, Nakanishi T, Kitagawa Y, Seki T, Fushimi K, Ito H, Meijerink A, Hasegawa Y (2016) Critical role of energy transfer between terbium ions for suppression of back energy transfer in nonanuclear terbium clusters. Sci Rep 6:37008CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations