Concentration Quenching in Ytterbium Coordination Polymers

  • Shun OmagariEmail author
Part of the Springer Theses book series (Springer Theses)


Concentration quenching due to energy transfer between lanthanide ions have long been the shortcoming of lanthanide-based compounds, especially for luminescent functionalities like upconversion and multi-emission where energy transfer is necessary. Concentration quenching in lanthanide coordination polymers, on the other hand, is empirically known to be a significantly smaller effect than the inorganic counterparts. Elucidating the mechanism of concentration quenching in coordination polymers is therefore crucial for development of efficient functional luminescent materials. This chapter describes the concentration quenching mechanism of [Yb(hfa)3dpbp]n (hfa: hexafluoroacetylacetonate, dpbp: 4,4′-bis(diphenylphosphoryl)-biphenyl) by experimental and theoretical approach. The mechanism of concentration quenching is found to be dominated by relaxation through phonon-assisted energy transfer.


  1. 1.
    Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070CrossRefGoogle Scholar
  2. 2.
    Di Bartolo B, Goldberg V (1980) Radiationless processes. Plenum PressGoogle Scholar
  3. 3.
    Auzel F, Baldacchini G, Laversenne L, Boulon G (2003) Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3. Opt Mater 24:103–109CrossRefGoogle Scholar
  4. 4.
    Benz F, Strunk HP (2012) Rare earth luminescence: a way to overcome concentration quenching. AIP Adv 2:2–7CrossRefGoogle Scholar
  5. 5.
    Wei W, Chen G, Baev A, He GS, Shao W, Damasco J, Prasad PN (2016) Alleviating luminescence concentration quenching in upconversion nanoparticles through organic dye sensitization. J Am Chem Soc 138:15130–15133CrossRefGoogle Scholar
  6. 6.
    Yang P, Deng P, Yin Z (2002) Concentration quenching in Yb:YAG. J Lumin 97:51–54CrossRefGoogle Scholar
  7. 7.
    Ito M, Boulon G, Bensalah A, Guyot Y, Goutaudier C, Sato H (2007) Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal. J Opt Soc Am B 24:3023–3032CrossRefGoogle Scholar
  8. 8.
    Jacobsohn LG, Bennett BL, Muenchausen RE, Smith JF, Cooke DW (2007) Luminescent properties of nanophosphors. Radiat Meas 42:675–678CrossRefGoogle Scholar
  9. 9.
    Cui Y, Chen B, Qian G (2014) Luminescent properties of nanophosphors. Coord Chem Rev 273–274:76–86CrossRefGoogle Scholar
  10. 10.
    Heine J, Müller-Buschbaum K (2013) Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev 43:9232–9242CrossRefGoogle Scholar
  11. 11.
    Yan B, Bai Y, Chen Z (2005) Synthesis, structure and luminescence of novel 1D chain coordination polymers [Ln(isophth)(Hisophth)(H2O)4 · 4H2O]n (Ln = Sm, Dy). J Mol Struct 741:141–147CrossRefGoogle Scholar
  12. 12.
    Auzel F, Bonfigli F, Gagliari S, Baldacchini G (2001) The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity. J Lumin 94–95:293–297CrossRefGoogle Scholar
  13. 13.
    Knoester J, Van Himbergen JE (1987) On the theory of concentration self‐quenching by statistical traps. J Chem Phys 86:3571CrossRefGoogle Scholar
  14. 14.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173CrossRefGoogle Scholar
  15. 15.
    Auzel F (2002) A fundamental self-generated quenching center for lanthanide-doped high-purity solids. J Lumin 100:125–130CrossRefGoogle Scholar
  16. 16.
    Miyakawa T, Dexter DL (1970) Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys Rev B 1:2961–2969CrossRefGoogle Scholar
  17. 17.
    Balda R, Fernández J, Saéz de Ocáriz I, Adam JL, Mendioroz A, Montoya E (1999) Spectroscopic properties of Pr3+ ions in fluorophosphate glass. Opt Mater 13:159–165CrossRefGoogle Scholar
  18. 18.
    Utochnikova VV, Kalyakina AS, Bushmarinov IS, Vashchenko AA, Marciniak L, Kaczmarek AM, Van Deun R, Bräse S, Kuzmina NP (2016) Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLEDs. J Mater Chem C 4:9848–9855CrossRefGoogle Scholar
  19. 19.
    Miyata K, Konno Y, Nakanishi T, Kobayashi A, Kato M, Fushimi K, Hasegawa Y (2013) Chameleon luminophore for sensing temperatures: control of metal‐to‐metal and energy back transfer in lanthanide coordination polymers. Angew Chem Int Ed 52:6413–6416CrossRefGoogle Scholar
  20. 20.
    Hirai Y, Nakanishi T, Miyata K, Fushimi K, Hasegawa Y (2014) Thermo-sensitive luminescent materials composed of Tb (III) and Eu (III) complexes. Mater Lett 130:91–93CrossRefGoogle Scholar
  21. 21.
    Miyata K, Ohba T, Kobayashi A, Kato M, Nakanishi T, Fushimi K, Hasegawa Y (2012) Thermostable organo‐phosphor: low‐vibrational Coordination polymers that exhibit different intermolecular interactions. ChemPlus Chem 77:277–280CrossRefGoogle Scholar
  22. 22.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761CrossRefGoogle Scholar
  23. 23.
    Ofelt GS (1962) Intensities of crystal spectra of rare‐earth ions. J Chem Phys 37:511–520CrossRefGoogle Scholar
  24. 24.
    Hehlen MP, Brik MG, Krämer KW (2013) 50th anniversary of the Judd–Ofelt theory: an experimentalist’s view of the formalism and its application. J Lumin 136:221–239CrossRefGoogle Scholar
  25. 25.
    Kushida T (1973) Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation. J Phys Soc Jpn 34:1318–1326CrossRefGoogle Scholar
  26. 26.
    Malta OL (2008) Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J Non Cryst Solids 354:4770–4776CrossRefGoogle Scholar
  27. 27.
    Aboshyan-Sorgho L, Nozary H, Aebischer A, Bünzli JCG, Morgantini PY, Kittilstved KR, Hauser A, Eliseeva SV, Petoud S, Piguet C (2012) Optimizing millisecond time scale near-infrared emission in polynuclear chrome (III)–lanthanide (III) complexes. J Am Chem Soc 134:12675–12684CrossRefGoogle Scholar
  28. 28.
    Starzak ME (1989) Mathematical methods in chemistry and physics. SpringerGoogle Scholar
  29. 29.
    Bünzli JCG, Eliseeva SV (2011) Basics of lanthanide photophysics, in Springer series on fluorescence. SpringerGoogle Scholar
  30. 30.
    Ito M, Goutaudier C, Guyot Y, Lebbou K, Fukuda T, Boulon G (2004) Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1 − XYbXF2 + X. J Phys: Condens Matter 16:1501–1521Google Scholar
  31. 31.
    Auzel F, de Sá GF, de Azevedo WM (1980) An example of concentration sensitive electron-phonon coupling in {(C4H9)4N}3EuxY1 − x(NCS)6 and a new hypothesis for self-quenching. J Lumin 21:187–192CrossRefGoogle Scholar
  32. 32.
    Auzel F, Pellé F (1996) Concentration and excitation effects in multiphonon non-radiative transitions of rare-earth ions. J Lumin 69:249–255CrossRefGoogle Scholar
  33. 33.
    Vink AP, Meijerink A (1998) Electron–phonon coupling of Cr3+-pairs and isolated sites in α-Al2O3 and MgO. Spectrochim Acta, Part A 54:1755–1761CrossRefGoogle Scholar
  34. 34.
    Carnall WT, Fields PR, Rajnak K (1965) Spectral intensities of trivalent lanthanides and actinides in solution I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+. 42:3797–3806Google Scholar
  35. 35.
    Auzel F, Jean-Louis AM, Toudic Y (1989) Oscillator strengths, quantum efficiencies, and laser cross sections of Yb3+ and Er3+ in III‐V compounds. J Appl Phys 66:3952–3955CrossRefGoogle Scholar
  36. 36.
    Krishnaiah KV, Rajeswari R, Kumar KU, Babu SS, Martin IR, Jayasankar CK (2014) Spectroscopy and radiation trapping of Yb3+ ions in lead phosphate glasses. J Quant Spectrosc Radiat Transf 140:37–47Google Scholar
  37. 37.
    Seregina EA, Seregin AA, Tikhonov GV (2014) Spectral and luminescent characteristics of trivalent lanthanide ions in a POCl3-SnCl4 inorganic solvent. Opt Spectrosc 116:438–453CrossRefGoogle Scholar
  38. 38.
    Balaji S, Mandal AK, Annapurna K (2012) Energy transfer based NIR to visible upconversion: Enhanced red luminescence from Yb3+/Ho3+ co-doped tellurite glass. Opt Mater 34:1930–1934CrossRefGoogle Scholar
  39. 39.
    Lu W-G, Zhong D-C, Jiang L, Lu T-B (2012) Lanthanide coordination polymers constructed from Imidazole-4, 5-dicarboxylate and sulfate: syntheses, structural diversity, and photoluminescent properties. Cryst Growth Des 12:3675–3683CrossRefGoogle Scholar
  40. 40.
    Decadt R, van Hecke K, Depla D, Leus K, Weinberger D, van Driessche I, Van Der Voort P, van Deun R (2012) Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem 51:11623–11634CrossRefGoogle Scholar
  41. 41.
    Chen S, Fan R, Sun C, Wang P, Yang Y, Su Q, Mu Y (2012) Synthesis, structure, and luminescent properties of lanthanide-based two-dimensional and three-dimensional metal–organic frameworks with 2, 4′-biphenyldicarboxylic acid. Cryst Growth Des 12:1337–1346CrossRefGoogle Scholar
  42. 42.
    Li ZY, Dai JW, Wang N, Qiu HH, Yue ST, Liu YL (2010) A series of three-dimensional 4d−4f heterometallic coordination polymers with six-connected doubly interpenetrated pcu net topology: structural, photoluminescent, and magnetic properties. Cryst Growth Des 10:2746–2751CrossRefGoogle Scholar
  43. 43.
    Ramya AR, Sharma D, Natarajan S, Reddy MLP (2012) Highly luminescent and thermally stable lanthanide coordination polymers Designed from 4-(dipyridin-2-yl)aminobenzoate: efficient energy transfer from Tb3+ to Eu3+ in a mixed lanthanide coordination compound. Inorg Chem 51:8818–8826CrossRefGoogle Scholar
  44. 44.
    Omagari S, Nakanishi T, Hirai Y, Kitagawa Y, Seki T, Fushimi K, Ito H, Hasegawa Y (2018) Origin of concentration quenching in ytterbium coordination polymers: phonon‐assisted energy transfer. Eur J Inorg Chem, 561–567CrossRefGoogle Scholar
  45. 45.
    Kishimoto S, Nakagawa T, Kawai T, Hasegawa Y (2011) Enhanced near-infrared luminescence of Yb (III) complexes with phosphine oxide and hexafluoroacetylacetonate ligands. Bull Chem Soc Jpn 84:1–5CrossRefGoogle Scholar
  46. 46.
    Samoc A (2003) Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. J Appl Phys 94:6167–6174CrossRefGoogle Scholar
  47. 47.
    El-Kashef H (2002) Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene. Opt Mater 20:81–86CrossRefGoogle Scholar
  48. 48.
    Kedenburg S, Vieweg M, Gissibl T, Giessen H (2012) Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mater Express 2:1588CrossRefGoogle Scholar
  49. 49.
    de Mello Donegá C, Meijerink A, Blasse G (1992) Vibronic transition probabilities in the excitation spectra of the Pr3+ ion. J Phys Condens Matter 4:8889–8902Google Scholar
  50. 50.
    de Mello Donegá C, Schenker S, Folkerts HF, Meijerink A, Blasse G (1994) Vibronic spectroscopy of Pr3+ in host lattices with the scheelite structure. J Phys Condens Matter 6:6043–6056Google Scholar
  51. 51.
    Hehlen MP, Kuditcher A, Rand SC, Tischler MA (1997) Electron–phonon interactions in CsCdBr3:Yb3+. J Chem Phys 107:4886–4892CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations