Advertisement

General Introduction

  • Shun OmagariEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Photoluminescent materials are used everywhere in our current society from daily lives to industries and research. As simple as it may seem, there are numerous types of photoluminescent materials (each with possibly different luminescence mechanisms), and tremendous amount of effort has been invested in research on these materials, sometimes going far into the fundamentals of quantum mechanics. The thesis focuses on lanthanide complexes, which is only one of the many types of luminescent materials available today. Understanding the contents of this thesis requires that the reader understands the underlying physical and chemical concepts of photoluminescence, lanthanides, and lanthanide complexes. This chapter provides the most basic concepts that the readers are required to understand. First, a very brief history of luminescent materials and their applications are mentioned. Then, the qualitative descriptions of photons (light) and the quantum mechanical descriptions of photoluminescence are introduced with minimal amount of mathematics. The chemical and physical properties of lanthanides and lanthanide complexes are explained along with several examples of lanthanide complexes. Finally, the outline of this thesis is provided.

References

  1. 1.
    Bragg, W (1935) The universe of light. The Hegeler InstituteGoogle Scholar
  2. 2.
    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y (2016) Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538:364–367PubMedCrossRefGoogle Scholar
  3. 3.
    Di Bartolo B, Goldberg V (1980) Radiationless processes. Plenum PressGoogle Scholar
  4. 4.
    Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19CrossRefGoogle Scholar
  5. 5.
    Huang C (2010) Rare earth coordination chemistry: fundamentals and applications. WileyGoogle Scholar
  6. 6.
    Bünzli JG, Eliseeva SV (2011) Basics of Lanthanide Photophysics. In: Springer Series on FluorescenceGoogle Scholar
  7. 7.
    Blackburn OA, Chilton NF, Keller K, Tait CE, Myers WK, McInnes EJL, Kenwright AM, Beer PD, Timmel CR, Faulkner S (2015) Spectroscopic and crystal field consequences of fluoride binding by [Yb· DTMA] 3+ in aqueous solution. Angew Chem Int Ed 54:10783–10786CrossRefGoogle Scholar
  8. 8.
    Liu G, Jacquier B (2005) Spectroscopic properties of rare earths in optical materials. SpringerGoogle Scholar
  9. 9.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4424–4442CrossRefGoogle Scholar
  10. 10.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels of the trivalent lanthanide aquo ions. II. Gd3+. J Chem Phys 49:4443–4446CrossRefGoogle Scholar
  11. 11.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4447–4449CrossRefGoogle Scholar
  12. 12.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4450–4455CrossRefGoogle Scholar
  13. 13.
    Dieke GH, Crosswhite HM (1963) The spectra of the doubly and triply ionized rare earths. Appl Opt 2:675–686CrossRefGoogle Scholar
  14. 14.
    Carnall WT, Fields PR, Wybourne BG (1965) Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+. J Chem Phys 42:3797–3806CrossRefGoogle Scholar
  15. 15.
    Carnall WT, Fields PR, Rajnak K (1968) Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J Chem Phys 49:4412–4423CrossRefGoogle Scholar
  16. 16.
    Marcantonatos MD (1986) Multiphonon non-radiative relaxation rates and Judd–Ofelt parameters of lanthanide ions in various solid hosts. J Chem Soc Faraday Trans 2(82):381–393CrossRefGoogle Scholar
  17. 17.
    Pukhov KK, Basiev TT, Auzel F, Pellé F, Heber J (2001) Multiphonon sideband intensities in rare earth ions in crystal. J Lumin 94–95:737–741CrossRefGoogle Scholar
  18. 18.
    Miyakawa T, Dexter DL (1970) Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys Rev B 1:2961–2969CrossRefGoogle Scholar
  19. 19.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173PubMedCrossRefGoogle Scholar
  20. 20.
    Binnemans K (2015) Interpretation of europium (III) spectra. Coord Chem Rev 295:1–45CrossRefGoogle Scholar
  21. 21.
    Lima NBD, Gonçalves SMC, Júnior SA, Simas AM (2013) A comprehensive strategy to boost the quantum yield of luminescence of europium complexes. Sci Rep 3:2395PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yanagisawa K, Kitagawa Y, Nakanishi T, Akama T, Kobayashi M, Seki T, Hasegawa Y (2017) Enhanced luminescence of asymmetrical seven-coordinate EuIII complexes including LMCT perturbation. Euro J Inorganic Chem 2017(32):3843–3848CrossRefGoogle Scholar
  23. 23.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761CrossRefGoogle Scholar
  24. 24.
    Ofelt GS (1962) Intensities of crystal spectra of rare‐earth ions. J Chem Phys 37:511–520CrossRefGoogle Scholar
  25. 25.
    Hehlen MP, Brik MG, Krämer KW (2013) 50th anniversary of the Judd–Ofelt theory: An experimentalist’s view of the formalism and its application. J Lumin 136:221–239CrossRefGoogle Scholar
  26. 26.
    Bünzli J-CG, Eliseeva SV (2013) Intriguing aspects of lanthanide luminescence. Chem Sci 4:1939–1949CrossRefGoogle Scholar
  27. 27.
    Hasegawa Y, Wada Y, Yanagida S (2004) Strategies for the design of luminescent lanthanide (III) complexes and their photonic applications. J Photochem Photobiol C 5:183–202CrossRefGoogle Scholar
  28. 28.
    Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755PubMedCrossRefGoogle Scholar
  29. 29.
    Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077PubMedCrossRefGoogle Scholar
  30. 30.
    Eliseeva SV, Bünzli J-CG (2011) Rare earths: jewels for functional materials of the future. New J Chem 35:1165CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Rodríguez A, Esteban-Gómez D, Tripier R, Tircsó G, Garda Z, Tóth I, de Blas A, Rodríguez-Blas T, Platas-Iglesias C (2014) A. deBlas, T. Rodriguez-Blas, C. Platas-Iglesias. J Am Chem Soc 136:17954–17957PubMedCrossRefGoogle Scholar
  32. 32.
    Souri N, Tian P, Lecointre A, Lemaire Z, Chafaa S, Strub J-M, Cianférani S, Elhabiri M, Platas-Iglesias C, Charbonnière LJ (2016) Step by Step Assembly of Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand. Inorg Chem 55:12962–12974PubMedCrossRefGoogle Scholar
  33. 33.
    Chauvin A-S, Comby S, Song B, Vandevyver CDB, Bünzli J-CG (2008) A versatile ditopic ligand system for sensitizing the luminescence of bimetallic lanthanide bio‐imaging probes. Chem Eur J 14:1726–1739PubMedCrossRefGoogle Scholar
  34. 34.
    Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227PubMedCrossRefGoogle Scholar
  35. 35.
    Tsien RY, Ernst L, Waggoner A (2006) Fluorophores for confocal microscopy: photophysics and photochemistry. In: Handbook of biological confocal microscopy. SpringerGoogle Scholar
  36. 36.
    Placide V, Bui AT, Grichine A, Duperray A, Pitrat D, Andraud C, Maury O (2015) wo-photon multiplexing bio-imaging using a combination of Eu-and Tb-bioprobes. Dalton Trans 44:4918–4924PubMedCrossRefGoogle Scholar
  37. 37.
    Nakamura K, Hasegawa Y, Kawai H, Yasuda N, Kanehisa N, Kai Y, Nagamura T, Yanagida S, Wada Y (2007) Enhanced lasing properties of dissymmetric Eu (III) complex with bidentate phosphine ligands. J Phys Chem A 111:3029–3037PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Marchionna S, Meinardi F, Acciarri M, Binetti S, Papagni A, Pizzini S, Malatesta V, Tubino R (2006) Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes. J Lumin 118:325–329CrossRefGoogle Scholar
  39. 39.
    Gunnlaugsson T, Leonard JP (2005) Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. Chem Commun 25:3114–3131CrossRefGoogle Scholar
  40. 40.
    Bradberry SJ, Savyasachi AJ, Martinez-Calvo M, Gunnlaugsson T (2014) Development of responsive visibly and nir luminescent and supramolecular coordination self-assemblies using lanthanide ion directed synthesis. Coord Chem Rev 273–274:226–241CrossRefGoogle Scholar
  41. 41.
    Taydakov IV, Akkuzina AA, Avetisov RI, Khomyakov AV, Saifutyarov RR, Avetissov IC (2016) Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J Lumin 177:31–39CrossRefGoogle Scholar
  42. 42.
    Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368PubMedCrossRefGoogle Scholar
  43. 43.
    de Bettencourt-Dias A (2007) Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans 22:2229–2241CrossRefGoogle Scholar
  44. 44.
    Shahi PK, Singh AK, Rai SB, Ullrich B (2015) Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sens Actuators A 222:255–261CrossRefGoogle Scholar
  45. 45.
    Teixeira ES, Neto BB, de Oliveira PMC, Longo RL (2016) Chemometric analysis of the luminescence quantum yields in lanthanide ion complexes. J Lumin 170:602–613CrossRefGoogle Scholar
  46. 46.
    Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Williams JAG, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans 2:493–504CrossRefGoogle Scholar
  47. 47.
    Hasegawa Y, Kimura Y, Murakoshi K, Wada Y, Kim J-H, Nakashima N, Yamanaka T, Yanagida S (1996) Enhanced emission of deuterated tris (hexafluoroacetylacetonato) neodymium (III) complex in solution by suppression of radiationless transition via vibrational excitation. J Phys Chem 100:10201–10205CrossRefGoogle Scholar
  48. 48.
    Hasegawa Y, Murakoshi K, Wada Y, Yanagida S, Kim J-H, Nakashima N, Yamanaka T (1996) Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent. Chem Phys Lett 248:8–12CrossRefGoogle Scholar
  49. 49.
    Doffek C, Alzakhem N, Bischof C, Wahsner J, Güden-Silber T, Lügger J, Platas-Iglesias C, Seitz M (2012) Understanding the quenching effects of aromatic C–H-and C–D-oscillators in near-IR lanthanoid luminescence. J Am Chem Soc 134:16413–16423PubMedCrossRefGoogle Scholar
  50. 50.
    Andres J, Chauvin A-S (2013) Energy transfer in coumarin-sensitised lanthanide luminescence: investigation of the nature of the sensitiser and its distance to the lanthanide ion. Phys Chem Chem Phys 15:15981–15994PubMedCrossRefGoogle Scholar
  51. 51.
    Albuquerque RQ, Da Costa NB, Freire RO (2011) Design of new highly luminescent Tb3+ complexes using theoretical combinatorial chemistry. J Lumin 131:2487–2491CrossRefGoogle Scholar
  52. 52.
    Gutierrez F, Tedeschi C, Maron L, Daudey JP, Poteau R, Azema J, Tisnès C, Picard C (2004) Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans 9:1334–1347CrossRefGoogle Scholar
  53. 53.
    Gutierrez F, Tedeschi C, Maron L, Daudey J-P, Azema J, Tisnès P, Picard C, Poteau R (2005) Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 2. Influence of the electrostatic interactions on the triplet state energy of terbium complexes. J Mol Struct (Theochem) 756:151–162CrossRefGoogle Scholar
  54. 54.
    Botelho MB, Gálvez-López MD, De Cola L, Albuquerque RQ, de Camargo AS (2013) Towards the design of highly luminescent europium (III) complexes. Euro J Inorganic Chem 2013(29):5064–5070CrossRefGoogle Scholar
  55. 55.
    Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield. J Lumin 75:149–169CrossRefGoogle Scholar
  56. 56.
    Ha-Thi M-H, Delaire JA, Michelet V, Leray I (2010) Sensitized emission of luminescent lanthanide complexes based on a phosphane oxide derivative. J Phys Chem A 114:3264–3269PubMedCrossRefGoogle Scholar
  57. 57.
    Fu L-M, Ai X-C, Li MY, Wen XF, Hao R, Wu Y-S, Wang Y, Zhang J-P (2010) Role of ligand-to-metal charge transfer state in nontriplet photosensitization of luminescent europium complex. J Phys Chem A 114:4494–4500PubMedCrossRefGoogle Scholar
  58. 58.
    Tobita S, Arakawa M, Tanaka I (1985) The paramagnetic metal effect on the ligand localized S1. apprx. fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J Phys Chem 89:5649–5654CrossRefGoogle Scholar
  59. 59.
    Guldi DM, Mody TD, Gerasimchuk NN, Magda D, Sessler JL (2000) Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J A Chem Soc 122:8289–8298CrossRefGoogle Scholar
  60. 60.
    Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203CrossRefGoogle Scholar
  61. 61.
    Lewis DJ, Glover PB, Solomons MC, Pikramenou Z (2011) Purely heterometallic lanthanide (III) macrocycles through controlled assembly of disulfide bonds for dual color emission. J Am Chem Soc 133:1033–1043PubMedCrossRefGoogle Scholar
  62. 62.
    D’Aléo A, Pointillart F, Ouahab L, Andraud C, Maury O (2012) Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord Chem Rev 256:1604–1620CrossRefGoogle Scholar
  63. 63.
    Zaïm A, Eliseeva SV, Guénée L, Nozary H, Petoud S, Piguet C (2014) Lanthanide‐to‐lanthanide energy‐transfer processes operating in discrete polynuclear complexes: can trivalent europium be used as a local structural probe? Chem Eur J 20:12172–12182PubMedCrossRefGoogle Scholar
  64. 64.
    Ilmi R, Iftikhar K (2015) Optical emission studies of new europium and terbium dinuclear complexes with trifluoroacetylacetone and bridging bipyrimidine. Fast radiation and high emission quantum yield. Polyhedron 102:16–26CrossRefGoogle Scholar
  65. 65.
    Habib F, Long J, Lin P-H, Korobkov I, Ungur L, Wernsdorfer W, Chibotaru LF, Murugesu M (2012) Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem Sci 3:2158CrossRefGoogle Scholar
  66. 66.
    Hirai Y, Nakanishi T, Kitagawa Y, Fushimi K, Seki T, Ito H, Fueno H, Tanaka K, Satoh T, Hasegawa Y (2015) Luminescent coordination glass: remarkable morphological strategy for assembled Eu (III) complexes. Inorg Chem 54:4364–4370PubMedCrossRefGoogle Scholar
  67. 67.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  68. 68.
    Förster T (1959)10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Disc Faraday Soc 27:7–17CrossRefGoogle Scholar
  69. 69.
    Seidel C, Lorbeer C, Cybińska J, Mudring A-V, Ruschewitz U (2012) Lanthanide coordination polymers with tetrafluoroterephthalate as a bridging ligand: thermal and optical properties. Inorg Chem 51:4679–4688PubMedCrossRefGoogle Scholar
  70. 70.
    Miyata K, Ohba T, Kobayashi A, Kato M, Nakanishi T, Fushimi K, Hasegawa Y (2012) Thermostable Organo‐phosphor: Low‐Vibrational Coordination Polymers That Exhibit Different Intermolecular Interactions. Chem Plus Chem 77:277–280Google Scholar
  71. 71.
    Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal–organic framework thermometer. J Am Chem Soc 134:3979–3982PubMedCrossRefGoogle Scholar
  72. 72.
    Nakajima A, Nakanishi T, Kitagawa Y, Seki T, Ito H, Fushimi K, Hasegawa Y (2016) Hyper-stable organo-Eu III luminophore under high temperature for photo-industrial application. Sci Rep 6:24458PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhang H, Zhou L, Wei J, Li Z, Lin P, Du S (2012) Highly luminescent and thermostable lanthanide-carboxylate framework materials with helical configurations. J Mater Chem 22:21210–21217CrossRefGoogle Scholar
  74. 74.
    Zhu Y, Zhu M, Xia L, Wu Y, Hua H, Xie J (2016) Lanthanide metal-organic frameworks with six-coordinated ln (iii) ions and free functional organic sites for adsorptions and extensive catalytic activities. Sci Rep 6:29728PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lu W-G, Zhong D-C, Jiang L, Lu T-B (2012) Lanthanide coordination polymers constructed from Imidazole-4, 5-dicarboxylate and sulfate: syntheses, structural diversity, and photoluminescent properties. Cryst Growth Des 12:3675–3683CrossRefGoogle Scholar
  76. 76.
    Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273–274:76–86CrossRefGoogle Scholar
  77. 77.
    Cui Y, Song R, Yu J, Liu M, Wang Z, Wu C, Yang Y, Wang Z, Chen B, Qian G (2015) Dual‐emitting MOF⊃ dye composite for ratiometric temperature sensing. Adv Mater 27:1420–1425PubMedCrossRefGoogle Scholar
  78. 78.
    Hirai Y, Nakanishi T, Miyata K, Fushimi K, Hasegawa Y (2014) Thermo-sensitive luminescent materials composed of Tb (III) and Eu (III) complexes. Mater Lett 130:91–93CrossRefGoogle Scholar
  79. 79.
    Rocha J, Brites CDS, Carlos LD (2016) Lanthanide organic framework luminescent thermometers. Chem Eur J 22:14782–14795PubMedCrossRefGoogle Scholar
  80. 80.
    Liao S, Yang X, Jones RA (2012) Self-assembly of luminescent hexanuclear lanthanide salen complexes. Cryst Growth Des 12:970–974CrossRefGoogle Scholar
  81. 81.
    Nakanishi T, Suzuki Y, Doi Y, Seki T, Koizumi H, Fushimi K, Fujita K, Hinatsu Y, Ito H, Tanaka K, Hasegawa Y (2014) Enhancement of optical faraday effect of nonanuclear Tb (III) complexes. Inorg Chem 53:7635–7641PubMedCrossRefGoogle Scholar
  82. 82.
    Thielemann DT, Wagner AT, Rösch E, Kölmel DK, Heck JG, Rudat B, Neumaier M, Feldmann C, Schepers U, Bräse S, Roesky PW (2013) Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J Am Chem Soc 135:7454–7457PubMedCrossRefGoogle Scholar
  83. 83.
    Petit S, Baril-Robert F, Pilet G, Reber C, Luneau D (2009) Luminescence spectroscopy of europium (III) and terbium (III) penta-, octa-and nonanuclear clusters with β-diketonate ligands. Dalton Trans 34:6809–6815CrossRefGoogle Scholar
  84. 84.
    Wang R, Song D, Wang S (2002) Ligand-controlled self-assembly of polynuclear lanthanide–oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem Commun 24:368–369CrossRefGoogle Scholar
  85. 85.
    Zheng Z (2001) Ligand-controlled self-assembly of polynuclear lanthanide–oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem Commun 24:2521–2529CrossRefGoogle Scholar
  86. 86.
    Kornienko A, Emge TJ, Kumar GA, Riman RE, Brennan JG (2005) Lanthanide clusters with internal Ln ions: Highly emissive molecules with solid-state cores. J Am Chem Soc 127:3501–3505PubMedCrossRefGoogle Scholar
  87. 87.
    Alexandropoulos DI, Mukherjee S, Papatriantafyllopoulou C, Raptopoulou CP, Psycharis V, Bekiari V, Christou G, Stamatatos TC (2011) A new family of nonanuclear lanthanide clusters displaying magnetic and optical properties. Inorg Chem 50:11276–11278PubMedCrossRefGoogle Scholar
  88. 88.
    Mazarakioti EC, Poole KM, Cunha-Silva L, Christou G, Stamatatos TC (2014) A new family of Ln 7 clusters with an ideal D 3h metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors. Dalton Trans 43:11456–11460PubMedCrossRefGoogle Scholar
  89. 89.
    Auzel F, Baldacchini G, Laversenne L, Boulon G (2003) Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3. Opt Mater 24:103–109CrossRefGoogle Scholar
  90. 90.
    Auzel F, Pellé F (1996) Concentration and excitation effects in multiphonon non-radiative transitions of rare-earth ions. J Lumin 69:249–255CrossRefGoogle Scholar
  91. 91.
    Yan B, Bai Y, Chen Z (2005) Synthesis, structure and luminescence of novel 1D chain coordination polymers [Ln (isophth)(Hisophth)(H 2 O) 4· 4H 2 O] n (Ln= Sm, Dy). J Mol Struct 741:141–147CrossRefGoogle Scholar
  92. 92.
    Heine J, Müller-Buschbaum K (2013) Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev 43:9232–9242CrossRefGoogle Scholar
  93. 93.
    Auzel F (2002) A fundamental self-generated quenching center for lanthanide-doped high-purity solids. J Lumin 100:125–130CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations