Management of Plant Biotic Stress with Botanicals and Antagonistic Fungi in the Tropics

  • David Babatunde Olufolaji
  • Ayodele Martins Ajayi


The adverse effect of the living components of the environment on plants is called biotic stress. Food insecurity, environmental degradation and global warming are some of the problems associated with loss of vegetation cover and crops death resulting from the activities of insect pests and pathogenic organisms (biotic stressors). A number of control measures exist for the management of plant biotic stress, but chemical control measures appear to be the most common in several parts of the globe. Mammalian toxicity, carcinogenicity, mutagenicity and disruption of the natural ecosystem are some of the common problems associated with chemical control of biotic stressors. It has therefore become imperative to adopt other management strategies that are environment friendly and less toxic to man and nontarget organisms. Botanicals and antagonistic fungi are two of these alternatives. They are cost effective, safe, environment friendly and sustainable. The tropic, because of its peculiar geography, ecology and economy, will benefit from this approach immensely.


Biotic stress Food insecurity Environmental degradation Botanicals Antagonistic fungi 


  1. Abayomi, S. (1993). Historical review of traditional medicine in Africa. Ibadan: Spectrum Book Ltd. 289 pp.Google Scholar
  2. Agrios, G. N. (2005). Plant pathology (5th ed.p. 922). Burlington: Elsevier Academic Press.Google Scholar
  3. Ajayi, A. M., & Olufolaji, D. B. (2009). The control of Brown blotch disease of cowpea through seed treatment with crude extracts of Gmelina arborea and Zingiber officinale. Nigerian Journal of Plant Protection, 23, 131–137.Google Scholar
  4. Ajayi, A. M., Olufolaji, D. B., & Lajide, L. (2016a). In-vitro evaluation of selected botanicals for the control of Ceratocystis paradoxa dada. Moreau. The causative organism of sugarcane sett rot disease. International Journal of Agriculture and Earth Science, 2(4), 74–85.Google Scholar
  5. Ajayi, A. M., Olufolaji, D. B., & Lajide, L. (2016b). Pineapple disease of sugarcane: An assessment of three Trichoderma spp. for use as possible biocontrol agents. International Journal of Advanced Academic Research/Sciences, Technology & Environment, 2(8), 23–34.Google Scholar
  6. Alabi, O., Banwo, O. O., & Alabi, S. O. (2016). Crop pest management and food security in Nigeria agriculture. Archives of Phytopathology and Plant Protection, 00(0), 1–8.Google Scholar
  7. Amoabeng, B. W., Gurr, G. M., Catherine, W., Gitau, C. W., Nicoll, H. L., Munyakazi, L. L., & Stevenson, P. C. (2013). Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS One, 8(10), 1–10.CrossRefGoogle Scholar
  8. Amrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2012). Plant response to stress. Zurich: Zurich-Basel Plant Science Center. 143 pp.Google Scholar
  9. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.
  10. Aung, O. M., Soytong, K., & Hyde, K. D. (2008). Diversity of Entomopathogenic fungi in rainforests of Chiang Mai Province, Thailand. Fungal Diversity, 30, 15–22.Google Scholar
  11. Bello, O. B., Ullah, H., Olawuyi, O., & Adebisi, O. (2016). Microorganisms causing post-harvest tomato (Solanum lycopersicum L.) fruit decay in Nigeria. Scientia, 13(2), 93–96.Google Scholar
  12. Bhatt, D. D., & Vaughan, E. K. (1962). Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. The Plant Disease Reporter, 46, 342–345.Google Scholar
  13. Boguś, M. I., & Scheller, K. (2002). Extraction of an insecticidal protein fraction from the parasitic fungus Conidiobolus coronatus (Entomophthorales). Acta Parasitologica, 47(1), 66–72.Google Scholar
  14. Borisade, O. A., Kolawole, A. O., Adebo, G. M., & Uwaidem, Y. I. (2017). The tomato leaf miner (Tuta absoluta) (Lepidoptera: Gelechiidae) attack in Nigeria: Effect of climate change on over-sighted Pest or agro-bioterrorism? Journal of Agricultural Extension and Rural Development, 9(8), 163–171.CrossRefGoogle Scholar
  15. Brooks, F., Rindi, F., Suto, Y., Ohtani, S., & Green, M. (2015). The Trentepohliales (Ulvophyceae, Chlorophyta): An unusual algal order and its novel plant pathogen Cephaleuros. Plant Disease, 99(6), 740–753.CrossRefGoogle Scholar
  16. Casas-Flores, S., & Herrera-Estrella, A. (2007). Antagonism of plant parasitic nematodes by Fungi. In C. P. Kubicek, & I. S. Druzhinina (Eds.), Environmental and microbial relationships (2nd ed., The Mycota IV). Berlin/Heidelberg: Springer-Verlag.Google Scholar
  17. Cera, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., & Allinne, C. (2017). Primary and secondary yield losses caused by pests and diseases: Assessment and modelling in coffee. PLoS One, 12(1), 1–17.Google Scholar
  18. Chandel, S., & Sharma, S. (2014). Botanicals, biofumigants and antagonists application in managing stem rot disease caused by Rhizoctonia solani Kuhn. In carnation. Journal of Biopesticides, 7(1), 3–10.Google Scholar
  19. Charnly, A. K., & Collins, S. A. (2007). Entomopathogenic fungi and their role in pest control. In: C. P. Kubicek, & I. S. Druzhinina (Eds.), Environment and microbial relationships (2nd ed., The Mycota IV, pp. 159–187). Berlin/Heidelberg: Springer-Verlag.Google Scholar
  20. Chaturvedi, M., Sharma, C., & Chaturvedi, M. (2013). Effects of pesticides on human beings and farm animals: A case study. Research Journal of Chemical and Environmental Sciences, 1(3), 14–19.Google Scholar
  21. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 564–582.CrossRefGoogle Scholar
  22. Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of Mdicinal plant products as antimicrobial agent: Current methods and future trends. Jurnal of Medicinal Plants Research, 4, 104–111.Google Scholar
  23. Deacon, J. W. (2006). Fungal biology (4th ed.). Malden: Blackwell Publishing. 371 pp.Google Scholar
  24. DeBary, A. (1887) Comparative morphology and biology of Fungi. Mycotozoa and Bacteria. Clarendon Press, Oxford. Reprinted by Johnson Reprint Corporation, New York.Google Scholar
  25. Dyakov, Y. T., Dzhavakhlya, V. G., & Korpela, T. (2007). Comprehensive and molecular phytopathology (1st ed.). Amsterdam: Elsevier Academic Press. 483 pp.Google Scholar
  26. Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. In F. Kempken (Ed.), The mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. XI. Agricultural applications (pp. 93–109). Heidelberg: Springer.Google Scholar
  27. El-Wakeil, N. E. (2013). Botanical pesticides and their mode of action. Gesunde Pflanzen, 65, 125–149.CrossRefGoogle Scholar
  28. Etebu, E., Nwauzoma, A. B., & DDS, B. (2013). Postharvest spoilage of tomato (Lycopersicon esculentum Mill.) and control strategies in Nigeria. Journal of Biology, Agriculture and Healthcare, 3(10), 51–61.Google Scholar
  29. FAO. (2015). The Food and Agricultural Organisation of the United Nations. The state of food insecurity in the world. 62 pp.Google Scholar
  30. Fraire-Velázquez, S., Rodríguez-Guerra, R., & Sanchez-Calderon, L. (2011). Abiotic and biotic stress crosstalk in plants. In A. K. Shanker & B. Venkateswarlu (Eds.), Abiotic stress response in plants–physiological, biochemical and genetic perspectives (pp. 3–26). Rijeka: In Tech.Google Scholar
  31. Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman, J. F., & Dommes, J. (2002). Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regulation, 37, 263–285.CrossRefGoogle Scholar
  32. Godbold, D. L. (1998). Stress concepts and forest trees. Chemosphere, 36, 859–864.CrossRefGoogle Scholar
  33. Greenberg, J. T., & Yao, N. (2004). The role and regulation of programmed cell death in plant–pathogen interactions. Cellular Microbiology, 6, 201–211.CrossRefGoogle Scholar
  34. Gul, H. T., Saeed, S., & Khan, F. Z. A. (2014). Entomopathogenic Fungi as effective insect Pest management tactic: A review. Applied Sciences and Business Economics, 1(1), 10–18.Google Scholar
  35. Gurjar, M. S., Ali, S., Masood, A. M., & Singh, K. S. (2012). Efficacy of plant extracts in plant disease management. Agricultural science., 3(3), 425–433.CrossRefGoogle Scholar
  36. Hull, R. (2009). Comparative plant virology (2nd ed.). Burlington: Elsevier Academic press. 376 pp.Google Scholar
  37. Jewell, M. C., Campbell, B. C., & Godwin, I. D. (2010). Transgenic plants for abiotic stress resistance. In C. Kole et al. (Eds.), Transgenic crop plants (pp. 67–132). Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  38. Kaiser, B., Vogg, B. G., Fürst, U. B., & Albert, M. (2015). Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants (review article). Frontier in Plant Science., 6(45), 1–9.Google Scholar
  39. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.CrossRefGoogle Scholar
  40. Korner, C. (2012). The stress concept in biology. In Plant response to stress (pp. 10–22). Zurich: Zurich-Basel Plant Science Center PSC.Google Scholar
  41. Krishania, S., Dwivedi, P., & Agarwal, K. (2013). Strategies of adaptation and injury exhibited by plants under a variety of external conditions: A short review. Comunicata Scientiae, 4(2), 103–110.Google Scholar
  42. Lam, E., Kato, N., & Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411, 848–853.CrossRefGoogle Scholar
  43. Lichtenthaler, H. K. (1996). Vegetation stress: An introduction to the stress concept in plants. Plant Physiology, 148, 4–14.CrossRefGoogle Scholar
  44. Lo, C. T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166.Google Scholar
  45. Mehrotra, R. S., & Ashok, A. (2006). Plant pathology (2nd ed.). New Delhi: Tata Macgraw-Hill Publishing Company Limited. 846 pp.Google Scholar
  46. Muller, C., & Paschke, M. (2012). Response to biotic factors causing plant stress. InPlant response to stress (pp. 110–133). Zurich: Zurich-Basel Plant Science Center PSC. Scholar
  47. Nilsen, E. T., & Orcutt, D. M. (1996). The physiology of plants under stress: Abiotic factors (Vol. 689). New York: Wiley.Google Scholar
  48. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  49. Olufolaji, D. B., Ajayi, A. M., Ariyo, T. C., & Rowland, M. (2014). Biological control of Colletotrichum falcatum, the red rot fungus of sugarcane with Trichoderma asperellum. In: Proceedings of Green Technologies for sustainable Growth of sugar & Integrated Industries in Developing Countries. Nanning, P.R. China, pp. 454–456.Google Scholar
  50. Olufolaji, D. B., Adeosun, B. O., & Onasanya, R. O. (2015). In-vitro investigation of antifungal activities of some plant extracts against Pyricularia oryzae. Nigerian Journal of Biotechnology, 29, 38–43.CrossRefGoogle Scholar
  51. Pallas, V., & Garcia, J. A. (2011). How do plant viruses induce disease? Interactions and interference with host components. Journal of General Virology, 92, 2691–2705.CrossRefGoogle Scholar
  52. Rahman, M. M., Khan, A. A., Ali, M. E., Mian, I. H., Akanda, A. M., & Abd Hamid, S. B. (2012). Botanicals to control soft rot bacteria of potato. The Scientific World Journal, 2012, 6. Article ID 796472.Google Scholar
  53. Regnault-Roger, C., & Philogène, B. J. R. (2008). Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmaceutical Biology, 46, 41–52.CrossRefGoogle Scholar
  54. Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3, 258–475.CrossRefGoogle Scholar
  55. Richard, N. S. (2005). Plant disease: A threat to global food security. Annual Review of Phytopathology, 43(3), 1–3.Google Scholar
  56. Richter, E. D. (2002). Acute human pesticide poisonings. InEncyclopaedia of pest management (pp. 3–6). New York: Marcel Dekker.Google Scholar
  57. Sahile, S., Sakhiya, P. K., Fininsa, C., & Ahmed, S. (2011). Potential antagonistic fungal species from Ethiopia for biological control of chocolate spot disease of faba bean. African Crop Science Journal, 19, 213–225.Google Scholar
  58. Singh, S. K. (2016). Studies on Fungal Endophytes in India: A brief review. Indian Phytopathology, 69(4), 323–327.Google Scholar
  59. Soytong, K., Srinon, W., Rattanacherdchai, K., Kanokmedhakul, S., & Kanokmedhakul, K. (2005). Application of Antagonistic Fungi to Control Anthracnose disease of grape. Journal of Agricultural Biotechnology, 1, 33–41.Google Scholar
  60. Wikipedia. (2017a). Tropics.
  61. Wikipedia. (2017b). Food security.
  62. Wood, R. K. S. (1951). The control of diseases of lettuce by use of Antagonistic. Annals of Applied Biology, 38, 217–230.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • David Babatunde Olufolaji
    • 1
  • Ayodele Martins Ajayi
    • 1
  1. 1.Pest Management Unit, Department of Crop, Soil and Pest ManagementFederal University of TechnologyAkureNigeria

Personalised recommendations