Advertisement

Grafting, Agrochemicals, and Oxidative Enzymes as Factor for Plant Biotic Resistance

  • Gean Charles Monteiro
  • Rumy Goto
  • Igor Otavio Minatel
  • Edvar de Sousa da Silva
  • Ewerton Gasparetto da Silva
  • Fabio Vianello
  • Giuseppina Pace Pereira LimaEmail author
Chapter

Abstract

Grafting has been practiced to overcome yield problems associated to soil-borne diseases or declines in production. Usually this agricultural method involves the choice of better stock and scion species, procedures to improve the graft union and subsequent healing, and acclimation of the grafted plant to soil. Similarly, to agrochemicals used in vegetable production, this method may induce changes in oxidative enzymes production by plants and consequently provide a higher resistance to biotic stresses. Microorganisms are one of the major concerns in agricultural practices, mainly by its increasing resistance to chemical products regularly applied in cultures. Nevertheless, the association of grafting methods to agrochemicals usage is a wide field of study that should be better interpreted by considering not only the resulting production, but their interactions and consequences in the plant metabolism. The purpose of this chapter is to review the resistance induced in plants by grafting methods or agrochemicals. In addition, the role of oxidative enzymes produced for resistance mechanisms is discussed.

Keywords

antioxidant activity phenolic compounds polyamines salicylic acid reactive oxygen species 

References

  1. Alan, O., Ozdemir, N., & Gunen, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6, 362–365.  https://doi.org/10.3923/ja.2007.362.365.CrossRefGoogle Scholar
  2. Alexopoulos, A. A., Kondylis, A., & Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. Journal of Food, Agriculture and Environment, 5, 178–179.Google Scholar
  3. Ali, A. A., & Alqurainy, F. (2006). Activities of antioxidants in plants under environmental stress. In N. Motohashi (Ed.), The lutein-prevention and treatment for diseases (pp. 187–256). Trivandrum: Transworld Research Network.Google Scholar
  4. Ammermann, E., Lorenz, G., Schelberger, K., et al. (2000). BAS 500 F–the new broad-spectrum strobilurin fungicide. In Council BCP (Ed.) Proceedings of the BCPC conference on pests and diseases. Brighton (pp 541–548).Google Scholar
  5. Anand, A., Uppalapati, S. R., Ryu, C.-M., et al. (2007). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiology, 146, 703–715.  https://doi.org/10.1104/pp.107.111302.CrossRefPubMedGoogle Scholar
  6. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.  https://doi.org/10.1016/j.scienta.2017.07.033.
  7. Appel, H. M. (1993). Phenolics in ecological interactions: The importance of oxidation. Journal of Chemical Ecology, 19, 1521–1552.  https://doi.org/10.1007/BF00984895.CrossRefPubMedGoogle Scholar
  8. Avenot, H. F., & Michailides, T. J. (2010). Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29, 643–651.  https://doi.org/10.1016/j.cropro.2010.02.019.CrossRefGoogle Scholar
  9. Babu, M., Griffiths, J. S., Huang, T. S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9, 325.  https://doi.org/10.1186/1471-2164-9-325.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beck, C., Oerke, E. C., & Dehne, H. W. (2002). Impact of strobilurins on physiology and yield formation of wheat. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67, 181–187.Google Scholar
  11. Bertelsen, J. R., De Neergaard, E., & Smedegaard-Petersen, V. (2001). Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant Pathology, 50, 190–205.  https://doi.org/10.1046/j.1365-3059.2001.00545.x.CrossRefGoogle Scholar
  12. Black, C. A., Karban, R., Godfrey, L. D., et al. (2003). Jasmonic acid: A vaccine against leafminers (Diptera: Agromyzidae) in celery. Environmental Entomology, 32, 1196–1202.  https://doi.org/10.1603/0046-225X(2003)032[1196:JAAVAL]2.0.CO;2.CrossRefGoogle Scholar
  13. Bletsos, F. A. (2005). Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. Journal of Phytopathology, 153, 155–161.  https://doi.org/10.1111/j.1439-0434.2005.00945.x.CrossRefGoogle Scholar
  14. Bonas, U., & Lahaye, T. (2002). Plant disease resistance triggered by pathogen-derived molecules: Refined models of specific recognition. Current Opinion in Microbiology, 5, 44–50.  https://doi.org/10.1016/S1369-5274(02)00284-9.CrossRefPubMedGoogle Scholar
  15. Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9, 110–115.  https://doi.org/10.1016/j.tplants.2004.01.006.CrossRefPubMedGoogle Scholar
  16. Cañizares, K. A. L., Costa, P. C., Goto, R., & Vieira, A. R. M. (2002). Desenvolvimento de mudas de pepino em diferentes substratos com e sem uso de solução nutritiva. Horticultura Brasileira, 20, 227–229.  https://doi.org/10.1590/S0102-05362002000200022.CrossRefGoogle Scholar
  17. Chen, S., Li, X., Lavoie, M., et al. (2017). Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of Environmental Sciences, 51, 352–360.  https://doi.org/10.1016/j.jes.2016.06.027.CrossRefGoogle Scholar
  18. Cipollini, D. F., & Redman, M. (1999). Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. Journal of Chemical Ecology, 25, 271–281.CrossRefGoogle Scholar
  19. Coll, N. S., Epple, P., & Dangl, J. L. (2011). Programmed cell death in the plant immune system. Cell Death and Differentiation, 18, 1247–1256.  https://doi.org/10.1038/cdd.2011.37.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Colla, G., Rouphael, Y., Cardarelli, M., & Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortscience, 41, 622–627.CrossRefGoogle Scholar
  21. Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae (Amsterdam), 127, 147–155.  https://doi.org/10.1016/j.scienta.2010.08.004.CrossRefGoogle Scholar
  22. Correa, R. S. B., Moraes, J. C., Auad, A. M., & Carvalho, G. A. (2005). Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotropical Entomology, 34, 429–433.  https://doi.org/10.1590/S1519-566X2005000300011.CrossRefGoogle Scholar
  23. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 564–582.CrossRefGoogle Scholar
  24. Davis, A. R., Perkins-Veazie, P., Sakata, Y., et al. (2008). Cucurbit grafting. CRC Critical Reviews in Plant Sciences, 27, 50–74.  https://doi.org/10.1080/07352680802053940.CrossRefGoogle Scholar
  25. de Wit, P. J. G. M. (2007). How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences, 64, 2726–2732.  https://doi.org/10.1007/s00018-007-7284-7.CrossRefPubMedGoogle Scholar
  26. Dempsey, D. A., & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15, 23.  https://doi.org/10.1186/s12915-017-0364-8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book, 9, e0156.  https://doi.org/10.1199/tab.0156.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dimmock, J., & Gooding, M. J. (2002). The effects of fungicides on rate and duration of grain filling in winter wheat in relation to maintenance of flag leaf green area. The Journal of Agricultural Science, 138, 1–16.  https://doi.org/10.1017/S0021859601001666.CrossRefGoogle Scholar
  29. Domínguez, I., Ferreres, F., Pascual del Riquelme, F., et al. (2012). Influence of preharvest application of fungicides on the postharvest quality of tomato (Solanum lycopersicum L.). Postharvest Biology and Technology, 72, 1–10.  https://doi.org/10.1016/j.postharvbio.2012.04.010.CrossRefGoogle Scholar
  30. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.  https://doi.org/10.1146/annurev.phyto.42.040803.140421.CrossRefPubMedGoogle Scholar
  31. Elsharkawy, M. M., Shimizu, M., Takahashi, H., et al. (2013). Induction of systemic resistance against cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathology Journal, 29, 193–200.  https://doi.org/10.5423/PPJ.SI.07.2012.01.CrossRefPubMedGoogle Scholar
  32. Fagan, E. B., Neto, D. D., Vivian, R., et al. (2010). Efeito da aplicação de piraclostrobina na taxa fotossintética, respiração, atividade da enzima nitrato redutase e produtividade de grãos de soja. Bragantia, 69, 771–778.CrossRefGoogle Scholar
  33. FRAC. (2014). Mechanisms of fungicide resistance. In Fungicide Resistance Action Committee. http://www.frac.info/resistance-overview/mechanisms-of-fungicide-resistance.
  34. FRAC. (2017). Fungicide resistance action committee. In: SDHI Fungicide. http://www.frac.info/working-group/sdhi-fungicides.
  35. Gaspar, T., Penel, C., Castillo, F. J., & Greppin, H. (1985). A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiologia Plantarum, 64, 418–423.  https://doi.org/10.1111/j.1399-3054.1985.tb03362.x.CrossRefGoogle Scholar
  36. Gessler, C., & Kuc, J. (1982). Induction of resistance to Fusarium wilt in cucumber by root and foliar pathogens. Phytopathology, 72, 1439–1441.  https://doi.org/10.1094/Phyto-72-1439.CrossRefGoogle Scholar
  37. Giannakou, I. O., & Karpouzas, D. G. (2003). Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Management Science, 59, 883–892.  https://doi.org/10.1002/ps.692.CrossRefPubMedGoogle Scholar
  38. Glättli, A., Grote, T, & Stammler, G. (2010). SDH-inhibitors: History, biological performance and molecular mode of action. Modern fungicides and antifungal compounds VI 16th International Reinhardsbrunn Symposium, pp. 159–169.Google Scholar
  39. Gooding, M. J., Dimmock, J. P. R. E., France, J., & Jones, S. A. (2000). Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. The Annals of Applied Biology, 136, 77–84.  https://doi.org/10.1111/j.1744-7348.2000.tb00011.x.CrossRefGoogle Scholar
  40. Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481.  https://doi.org/10.1071/FP05016.CrossRefGoogle Scholar
  41. Grossmann, K., & Retzlaff, G. (1997). Bioregulatory. Pesticide Science, 50, 11–20.CrossRefGoogle Scholar
  42. Guimarães, L. R. P., Soler, J. M. P., Lima, G. P. P., & Pavan, M. A. (2014). Polyamines in tomato plants grown during an incidence of tospovirus exposure. European Journal of Plant Pathology, 140, 701–709.  https://doi.org/10.1007/s10658-014-0490-x.CrossRefGoogle Scholar
  43. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (4th ed.). Oxford: Oxford University Press.Google Scholar
  44. He, Y., Zhu, Z., Yang, J., et al. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66, 270–278.  https://doi.org/10.1016/j.envexpbot.2009.02.007.CrossRefGoogle Scholar
  45. Hiraga, S. (2001). A large family of class III plant peroxidases. Plant & Cell Physiology, 42, 462–468.  https://doi.org/10.1093/pcp/pce061.CrossRefGoogle Scholar
  46. Hunt, M. D., Eannetta, N. T., Yu, H., et al. (1993). cDNA cloning and expression of potato polyphenol oxidase. Plant Molecular Biology, 21, 59–68.CrossRefGoogle Scholar
  47. Jacobsen, B. J., Zidack, N. K., & Larson, B. J. (2004). The role of bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94, 1272–1275.  https://doi.org/10.1094/PHYTO.2004.94.11.1272.CrossRefPubMedGoogle Scholar
  48. Jiménez-Bremont, J. F., Marina, M., Guerrero-González M de la, L., et al. (2014). Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Frontiers in Plant Science, 5, 95.  https://doi.org/10.3389/fpls.2014.00095.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jones, J. D. G., & Dangl, L. (2006). The plant immune system. Nature, 444, 323–329.  https://doi.org/10.1038/nature05286.CrossRefPubMedGoogle Scholar
  50. Joshi, J., Sharma, S., & Guruprasad, K. N. (2014). Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335). Pesticide Biochemistry and Physiology, 114, 61–66.  https://doi.org/10.1016/j.pestbp.2014.07.002.CrossRefPubMedGoogle Scholar
  51. Jung, H. W., Tschaplinski, T. J., Wang, L., et al. (2009) Priming in systemic plant immunity. Science (80-), 324, 89–91.  https://doi.org/10.1126/science.1170025$\$r324/5923/89 [pii].
  52. Karadimos, D. A., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2005). Biological activity and physical modes of action of the Q o inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola. Crop Protection, 24, 23–29.  https://doi.org/10.1016/j.cropro.2004.06.004.CrossRefGoogle Scholar
  53. Kim, Y.-M., Lee, C.-H., Kim, H.-G., & Lee, H.-S. (2004). Anthraquinones isolated from Cassia tora (leguminosae) seed show an antifungal property against phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 52, 6096–6100.  https://doi.org/10.1021/jf049379p.CrossRefPubMedGoogle Scholar
  54. Kohatsu, D. S., Zucareli, V., Brambilla, W. P., et al. (2013). Peroxidase and polyphenol oxidase activity on the yield of grafted and ungrafted cucumber plants. African Journal of Agricultural Research, 8, 279–283.  https://doi.org/10.5897/AJAR12.1560.CrossRefGoogle Scholar
  55. Köhle, H., Gold, R. E., Ammermann, E., et al. (1994). Biokinetic properties of BAS 490 F and some related compounds. Biochemical Society Transactions, 22, 65S–65S.  https://doi.org/10.1042/bst022065s.CrossRefPubMedGoogle Scholar
  56. Koo, Y. J., Kim, M. A., Kim, E. H., et al. (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 64, 1–15.  https://doi.org/10.1007/s11103-006-9123-x.CrossRefPubMedGoogle Scholar
  57. Kozlowski, L. A., De, S. C. D., & Trento, M. (2009). Efeito fisiológico de estrobilurina f 500® physiological effects of strobilurins f 500® in the growth and yield of bean. Revista Acadêmica : Ciências Agrárias e Ambientais, 7, 41–54.CrossRefGoogle Scholar
  58. LaMondia, J. A. (2009). Efficacy of fungicides and a systemic acquired resistance activator (acibenzolar-S-methyl) against tobacco blue mould. Crop Protection, 28, 72–76.  https://doi.org/10.1016/j.cropro.2008.08.017.CrossRefGoogle Scholar
  59. Lee, Y. H., & Hong, J. K. (2015). Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathology, 64, 406–415.  https://doi.org/10.1111/ppa.12262.CrossRefGoogle Scholar
  60. Lee, J., Kubota, C., Tsao, S. J., et al. (2010). Scientia Horticulturae current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae (Amsterdam), 127, 93–105.  https://doi.org/10.1016/j.scienta.2010.08.003.CrossRefGoogle Scholar
  61. Lee, Y. H., Kim, S. H., Yun, B. W., & Hong, J. K. (2014). Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic acid, jasmonic acid and ethylene. Plant Pathology Journal, 30, 323–329.  https://doi.org/10.5423/PPJ.NT.06.2014.0053.CrossRefPubMedGoogle Scholar
  62. Lima, J. D., Da Silva Moraes, W., & Da Silva, S. H. M. G. (2012). Respostas fisiológicas em mudas de bananeira tratadas com estrobilurinas. Semina: Ciências Agrárias, 33, 77–86.  https://doi.org/10.5433/1679-0359.2012v33n1p77.CrossRefGoogle Scholar
  63. Lin, T. C., Ishizaka, M., & Ishii, H. (2009). Acibenzolar-S-methyl-induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. Journal of Phytopathology, 157, 40–50.  https://doi.org/10.1111/j.1439-0434.2008.01448.x.CrossRefGoogle Scholar
  64. Loake, G., & Grant, M. (2007). Salicylic acid in plant defence—The players and protagonists. Current Opinion in Plant Biology, 10, 466–472.  https://doi.org/10.1016/j.pbi.2007.08.008.CrossRefPubMedGoogle Scholar
  65. Louws, F. J., Rivard, C. L., & Kubota, C. (2010). Scientia Horticulturae grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae (Amsterdam), 127, 127–146.  https://doi.org/10.1016/j.scienta.2010.09.023.CrossRefGoogle Scholar
  66. Luna, E., Bruce, T. J. A., Roberts, M. R., et al. (2012). Next-generation systemic acquired resistance. Plant Phisiology, 158, 844–853.  https://doi.org/10.1104/pp.111.187468.CrossRefGoogle Scholar
  67. Macedo, A. C., Amaro, A. C. E., Ramos, A. R. P., et al. (2017). Strobilurin and boscalid in the quality of net melon fruits. Semina: Ciências Agrárias, 38, 543.  https://doi.org/10.5433/1679-0359.2017v38n2p543.CrossRefGoogle Scholar
  68. Mayer, A. M., & Staples, R. C. (2002). Laccase: New functions for an old enzyme. Phytochemistry, 60, 551–565.CrossRefGoogle Scholar
  69. Mhamdi, A., Queval, G., Chaouch, S., et al. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61, 4197–4220.  https://doi.org/10.1093/jxb/erq282.CrossRefPubMedGoogle Scholar
  70. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.  https://doi.org/10.1016/j.tplants.2004.08.009.CrossRefPubMedGoogle Scholar
  71. Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.  https://doi.org/10.1146/annurev.arplant.58.032806.103946.CrossRefPubMedGoogle Scholar
  72. Moschou, P. N., Sarris, P. F., Skandalis, N., et al. (2009). Engineered polyamine catabolism pre-induces tolerance of tobacco to bacteria and oomycetes. Plant Physiology, 149, 108.134932.  https://doi.org/10.1104/pp.108.134932.CrossRefGoogle Scholar
  73. Moya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control, 92, 153–163.  https://doi.org/10.1016/j.biocontrol.2015.10.006.CrossRefGoogle Scholar
  74. Mueller, D. S., & Bradley, C. A. (2008). Field crop fungicides for the North Central United States. Ames: Agricultural Experiment Station, Iowa State University.Google Scholar
  75. Neher, O. T., & Jacobsen, B. J. (2008). Arabidopsis defense pathways activated by Bacillus mojavensis isolate 203-7 and B. Mycoides isolate BmJ. Phytopathology, 98, S112.Google Scholar
  76. Noctor, G., Arisi, A.-C. M., Jouanin, L., et al. (1998). Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49, 623–647.  https://doi.org/10.1093/jxb/49.321.623.CrossRefGoogle Scholar
  77. Oda, M. (1995). New grafting methods for fruit-bearing vegetables in Japan. Japan Agricultural Research Quarterly, 29, 187–194.Google Scholar
  78. Oostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107, 19–28.CrossRefGoogle Scholar
  79. Peil, R. (2003). A enxertia na produção de mudas de hortaliças. Ciência Rural, 33, 1169–1177.  https://doi.org/10.1590/S0103-84782003000600028.CrossRefGoogle Scholar
  80. Perez, L., Rodriguez, M. E., Rodriguez, F., & Roson, C. (2003). Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp. tabacina. Crop Protection, 22, 405–413.  https://doi.org/10.1016/S0261-2194(02)00198-9.CrossRefGoogle Scholar
  81. Pogonyi, Á., Pék, Z., Helyes, L., & Lugasi, A. (2005). Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34, 453–462.  https://doi.org/10.1556/AAlim.34.2005.4.12.CrossRefGoogle Scholar
  82. Pretali, L., Bernardo, L., Butterfield, T. S., et al. (2016). Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry, 130, 56–63.  https://doi.org/10.1016/j.phytochem.2016.04.002.CrossRefPubMedGoogle Scholar
  83. Ramos, A. R. P., Amaro, A. C. E., Macedo, A. C., et al. (2013). Qualidade de frutos de tomate “giuliana” tratados com produtos de efeitos fisiológicos. Semina: Ciencias Agrarias, 34, 3543–3552.  https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3543.CrossRefGoogle Scholar
  84. Ramos, A. R. P., Amaro, A. C. E., Macedo, A. C., et al. (2015). Acúmulo de carboidratos no desenvolvimento de tomateiro tratado com produtos químicos. Semina: Ciencias Agrarias, 36, 705–718.  https://doi.org/10.5433/1679-0359.2015v36n2p705.CrossRefGoogle Scholar
  85. Resende, M. L. V., Salgado, S. M. L., & Chaves, Z. M. (2003). Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatologia Brasileira, 28, 123–130.  https://doi.org/10.1590/S0100-41582003000200001.CrossRefGoogle Scholar
  86. Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Journal of Food, Agriculture and Environment, 1, 70–74.Google Scholar
  87. Rouphael, Y., Cardarelli, M., Colla, G., & Rea, E. (2008). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hortscience, 43, 730–736.  https://doi.org/10.1002/jsfa.3207.CrossRefGoogle Scholar
  88. Saathoff, A. J., Donze, T., N a, P., et al. (2013). Towards uncovering the roles of switchgrass peroxidases in plant processes. Frontiers in Plant Science, 4, 202.  https://doi.org/10.3389/fpls.2013.00202.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Salanoubat, M., Genin, S., Artiguenave, F., et al. (2002). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497–502.  https://doi.org/10.1038/415497a.CrossRefPubMedGoogle Scholar
  90. Savvas, D., Giotis, D., Chatzieustratiou, E., et al. (2009). Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and Experimental Botany, 65, 11–17.  https://doi.org/10.1016/j.envexpbot.2008.07.004.CrossRefGoogle Scholar
  91. Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.  https://doi.org/10.1590/S0100-879X2005000700003.CrossRefPubMedGoogle Scholar
  92. Shah, J., & Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4, 1–16.  https://doi.org/10.3389/fpls.2013.00030.CrossRefGoogle Scholar
  93. Sierotzki, H., & Scalliet, G. (2013). A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology, 103, 880–887.  https://doi.org/10.1094/PHYTO-01-13-0009-RVW.CrossRefPubMedGoogle Scholar
  94. Silva, E. S., Menezes, D. V., Silva, E. G., et al. (2016). Different methods of grafting and activity of antioxidant enzymes in tomato. Revista Brasileira de Ciências Agrárias – Brazilian Journal of Agricultural Sciences, 11, 267–271.  https://doi.org/10.5039/agraria.v11i4a5392.CrossRefGoogle Scholar
  95. Sirtoli, L. F., Rodrigues, J. D., & Goto, R. (2011). Cucumis sativus. Scientia Agraria Paranaensis, 10, 58–69.Google Scholar
  96. Soares, R. M., Maringoni, A. C., & Lima, G. P. P. (2004). Ineficiência de acibenzolar-S-methyl na indução de resistência de feijoeiro comum à murcha-de-Curtobacterium. Fitopatologia Brasileira, 29, 373–377.  https://doi.org/10.1590/S0100-41582004000400002.CrossRefGoogle Scholar
  97. Soylu, S., Baysal, Ö., & Soylu, E. M. (2003). Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings. Plant Science, 165, 1069–1075.  https://doi.org/10.1016/S0168-9452(03)00302-9.CrossRefGoogle Scholar
  98. Steffens, J. C., Harel, E., & Hunt, M. D. (1994). Polyphenol oxidase. In B. E. Ellis, G. W. Kuroki, & H. A. Stafford (Eds.), Genetic engineering of plant secondary metabolism (pp. 275–312). Boston: Springer.CrossRefGoogle Scholar
  99. Strid, Å., Chow, W. S., & Anderson, J. M. (1994). UV-B damage and protection at the molecular level in plants. Photosynthesis Research, 39, 475–489.CrossRefGoogle Scholar
  100. Thaler, J. S. (1999). Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 399, 686–688.  https://doi.org/10.1038/21420.CrossRefGoogle Scholar
  101. Turhan, A., Ozmen, N., Serbeci, M. S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38, 142–149.CrossRefGoogle Scholar
  102. Venema, J. H., Dijk, B. E., Bax, J. M., et al. (2008). Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environmental and Experimental Botany, 63, 359–367.  https://doi.org/10.1016/j.envexpbot.2007.12.015.CrossRefGoogle Scholar
  103. Verhage, A., van Wees, S. C. M., & Pieterse, C. M. J. (2010). Plant immunity: it’s the hormones talking, but what do they say? Plant Physiology, 154, 536–540.  https://doi.org/10.1104/pp.110.161570.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Vicentini, C. B., Romagnoli, C., Andreotti, E., & Mares, D. (2007). Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 55, 10331–10338.  https://doi.org/10.1021/jf072077d.CrossRefPubMedGoogle Scholar
  105. Vlot, A. C., Klessig, D. F., & Park, S. (2008). Systemic acquired resistance: The elusive signal(s). Current Opinion in Plant Biology, 11, 436–442.  https://doi.org/10.1016/j.pbi.2008.05.003.CrossRefPubMedGoogle Scholar
  106. Willekens, H. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 16, 4806–4816.  https://doi.org/10.1093/emboj/16.16.4806.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wu, Y.-X., & von Tiedemann, A. (2001). Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pesticide Biochemistry and Physiology, 71, 1–10.  https://doi.org/10.1006/pest.2001.2561.CrossRefGoogle Scholar
  108. Wu, Y., & von Tiedemann, A. (2002). Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environmental Pollution, 116, 37–47.  https://doi.org/10.1016/S0269-7491(01)00174-9.CrossRefPubMedGoogle Scholar
  109. Xie, J., Chai, T., Xu, R., et al. (2017). Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. Electronic Journal of Biotechnology, 27, 63–69.  https://doi.org/10.1016/j.ejbt.2017.03.007.CrossRefGoogle Scholar
  110. Yamakawa, K. (1982). Use of rootstocks in solanaceous fruit-vegetable production in Japan. Japan Agricultural Research Quarterly, 15, 175–179.Google Scholar
  111. Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269.  https://doi.org/10.1071/EA02095.CrossRefGoogle Scholar
  112. Yoda, H. (2006). Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiology, 142, 193–206.  https://doi.org/10.1104/pp.106.080515.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhang, Y. J., Zhang, X., Chen, C. J., et al. (2010). Effects of fungicides JS399-19, azoxystrobin, tebuconazloe, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pesticide Biochemistry and Physiology, 98, 151–157.  https://doi.org/10.1016/j.pestbp.2010.04.007.CrossRefGoogle Scholar
  114. Zhang, Q., Wang, C., Yong, D., et al. (2014). Induction of resistance mediated by an attenuated strain of valsa mali var. mali using pathogen-apple callus interaction system. Scientific World Journal, 1–10.  https://doi.org/10.1155/2014/201382.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gean Charles Monteiro
    • 1
  • Rumy Goto
    • 2
  • Igor Otavio Minatel
    • 3
  • Edvar de Sousa da Silva
    • 4
  • Ewerton Gasparetto da Silva
    • 5
  • Fabio Vianello
    • 6
  • Giuseppina Pace Pereira Lima
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryInstitute of Biosciences, São Paulo State University (UNESP)BotucatuBrazil
  2. 2.Department of Horticulture, School of AgricultureSão Paulo State University (UNESP)BotucatuBrazil
  3. 3.Faculdade Sudoeste PaulistaAvaréBrazil
  4. 4.Instituto Federal do AcreRio BrancoBrazil
  5. 5.Instituto Federal do Piauí, Campus UruçuíUruçuíBrazil
  6. 6.Department of Comparative Biomedicine and Food ScienceUniversity of PadovaPadovaItaly

Personalised recommendations