Strategies for the Management of Soil-Borne Pathogens and Crop Production Under Saline Environment

  • M. I. S. SafeenaEmail author
  • M. C. M. Zakeel


Total agricultural land of the globe becomes insufficient due to the progressive nature of primary and secondary salinity. High salt content in the irrigation water or soil is a serious restriction factor to the cultivation of many crops. Salinity has significant influence in maintaining the balance nature of osmosis, the availability of water and nutrients, and the formation of free radicals in plant. The consequence of these factors causes undesirable effect on photosynthesis, growth, and development of numerous economically important plants. This review evaluates the management practices or strategies based on the combination of approaches through management of soil-borne pathogens, root-zone salinity management, quality irrigation, and cultural practices to accelerate the removal of salts and cultivation of salt-tolerant plants. Root-zone salinity is mainly controlled by different irrigation systems and leaching and by the use of appropriate plants to maintain the water table. There is a diverse strategy that can be applied through quality irrigation and cultural practices. Different modes of irrigation, tillage, and bio-drainage, addition of organic matters and gypsum, and application of sulfur are some of them. However, growing salt-tolerant plants along with the traditional methods of managing the saline environment take a momentum to reduce the effect of high salinity. Genetic engineering approach through the deep understanding of physiological response of plants to salinity would augment the identification of potential gens for developing transgenic plants. Application of microbes, organic matters, and green remediation also has proved the improvement of plant health and productivity under salinity and biotic stress. These management strategies provide an insight to the effective crop production under saline environment.


Salinity Management strategies Microbes Bioremediation Soil-borne pathogens Crop production 


  1. Abd-Allah, E. F., Hashem, A., Alqarawi, A. A., Bahkali, A. H., & Alwhibib, M. S. (2015). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 22(3), 274–283.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad, N., & Qadir, M. (1995). Reclamation methods for saline-sodic soils of Pakistan. In M. A. Khan & L. A. Ungar (Eds.), Biology of salt tolerant plants (pp. 19–324). Chelsea: Book Crafters.Google Scholar
  3. Alabouvette, C., Backhouse, D., Steinberg, C., Donovan, N. J., Edel-Hermann, V., & Burgess, L. W. (2004). Microbial diversity in soil: Effects on crop health. In P. Schjonning, S. Elmholt, & B. T. Christensen (Eds.), Managing soil quality: Challenges in modern agriculture (pp. 121–138). Wallingford: CAB International.CrossRefGoogle Scholar
  4. Andriolo, J. L., da Luz, G. L., Witter, M. H., Godori, R. S., Barros, G. T., & Bortolotto, O. C. (2005). Growth and yield of lettuce plants under salinity. Hortic Braz, 23, 931–934.CrossRefGoogle Scholar
  5. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  6. Aryantha, I. P., Cross, R., & Guest, D. J. (2000). Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology, 90, 775–782.PubMedCrossRefGoogle Scholar
  7. Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–3355). Berlin: Springer.CrossRefGoogle Scholar
  8. Aslam, M., Qureshi, R. H., & Ahmad, N. (1993). A rapid screening technique for salt tolerance in rice. Plant and Soil, 150, 99–107.CrossRefGoogle Scholar
  9. Asraf, M., & Akram, N. A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Advance in Biotechnology, 27(6), 744–752.CrossRefGoogle Scholar
  10. Assis, S. M. P., Silveira, E. B., Mariano, R. L. R., & Menezes, D. (1998). Endophytic bacteria: Method for isolation and antagonistic potential against cabbage black rot. Summa Phytopathologica, 24, 216–220.Google Scholar
  11. Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72, 169–180.CrossRefGoogle Scholar
  12. Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.PubMedCrossRefGoogle Scholar
  13. Beltran, J. M. (1999). Irrigation with saline water: Benefits and environmental impact. Agricultural Water Management, 40, 183–194.CrossRefGoogle Scholar
  14. Bernstein, L., & Francois, L. E. (1973). Leaching requirements studies: Sensitivity of alfalfa to salinity of irrigation and drainage waters. Proceedings of the Soil Science Society of America, 37, 931–943.CrossRefGoogle Scholar
  15. Bielorai, H., Shalhevet, J., & Levy, Y. (1988). Grapefruit response to variable salinity in irrigation water and soil. Irrigation Science, 1, 61–70.CrossRefGoogle Scholar
  16. Bonilla, N., José, A., Gutiérrez-Barranquero, de Vicente, A., & Francisco, M. C. (2012). Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4, 475.CrossRefGoogle Scholar
  17. Boumans, J. H., van Hoorn, J. W., Kruseman, G. P., & Tanwar, B. S. (1988). Water table control reuse and disposal of drainage water in Haryana. Agricultural Water Management, 14, 537–545.CrossRefGoogle Scholar
  18. Brown, J. W., & Hayward, H. E. (1956). Salt tolerance of alfalfa varieties. Agronomy Journal, 48, 18–20.CrossRefGoogle Scholar
  19. Carlier, E., Rovera, M., Jaume, A. R., & Rosas, S. (2008). Improvement of growth, under field conditions, of wheat inoculated with Pseudomonas chlororaphis subsp aurantiaca SR1. World Journal of Microbiology and Biotechnology, 24, 2653–2658.CrossRefGoogle Scholar
  20. Caro, M., Cruz, V., Cuartero, J., Estan, M. T., & Bolarin, M. C. (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant and Soil, 136, 249–255.CrossRefGoogle Scholar
  21. Chandra, R. (2001). Development of irrigation water management strategies: A case study. ME thesis submitted to Maharana Pratap University of Agriculture and Technology Udaipur.Google Scholar
  22. Chaudhari, S. K., Dagar, J. C., Kumar, L. K. M., Kaur, A. (2012a). Modeling the water balance in Eucalyptus strip plantation (p. 71). National Seminar on Management of Salt Affected Soils and Waters, Lucknow.Google Scholar
  23. Chaudhari, S. K., Dagar, J. C., Singh, G. B., Sharma, D. K. (2012b). Shallow saline groundwater impacts on water-use and salt accumulation by Eucalyptus tereticornis and Casuarina equisetifolia (p. 114). National Seminar on Management of Salt Affected Soils and Waters, Lucknow.Google Scholar
  24. Chaudhry, M. R., Hamid, A., & Javid, M. A. (1984). Use of gypsum in amending sodic water for crop production (Pub. No.136, Mona Rec. Expt. Proj, p. 23), Pakistan.Google Scholar
  25. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H. V., de Bruijn, F. J., Thomas-Oates, J. E., & Lugtenberg, B. J. J. (1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot cause by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 11, 1069–1077.CrossRefGoogle Scholar
  26. Dulanjalee, P. H. E., & Pitawala, A. (2008). Salt mineralogy of soils in the area of Nawagatnthegama Sri Lanka. In Proceedings of the Peradeniya University Research Sessions, Sri Lanka. pp. 13.Google Scholar
  27. Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751–756.CrossRefGoogle Scholar
  28. Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563–571.CrossRefGoogle Scholar
  29. Egamberdieva, D., Wirth, S., Jabborova, D., Räsänen, L. A., Berg, G., & Liao, H. (2017). Coordination between Bradyrhizobium and root colonizing Pseudomonas alleviates salt stress in soybean (Glycine max L.) through altering root system architecture and improving nodulation. Journal of Plant Microbe Interactions, 12(1), 100–107.CrossRefGoogle Scholar
  30. Epstein, E. (1985). Salt-tolerant crops: Origins development and prospects of the concept. Plant and Soil, 89, 187–198.CrossRefGoogle Scholar
  31. Epstein, E., & Rains, D. W. (1987). Advances in salt tolerance. Plant and Soil, 99, 17–29.CrossRefGoogle Scholar
  32. Epstein, E., Norlyn, J. D., Rush, D. W., Kingsbury, R. W., & Kelley, D. B. (1980). Saline culture of crops: A genetic approach. Science, 210, 399–404.PubMedCrossRefGoogle Scholar
  33. Focht, D. D. (1979). Microbial kinetics of nitrogen losses in flooded soils. In Nitrogen and rice, international rice research institute Manila Philippines. pp 119–135.Google Scholar
  34. Francois, L. E. (1994). Growth seed yield and oil content of canola grown under saline conditions. Agronomy Journal, 86, 233–237.CrossRefGoogle Scholar
  35. Francois, L. E., & Kleiman, R. (1990). Salinity effects on vegetative growth seed yield and fatty acid composition of crambe. Agronomy Journal, 82, 1110–1114.CrossRefGoogle Scholar
  36. Francois, L. E., Donovan, T. J., & Maas, E. V. (1984). Salinity effects on seed yield growth and germination of grain sorghum. Agronomy Journal, 76, 741–744.CrossRefGoogle Scholar
  37. Francois, L. E., Donovan, T. J., Lorenz, K., & Maas, E. V. (1989). Salinity effects on rye grain yield quality vegetative growth and emergence. Agronomy Journal, 81, 707–712.CrossRefGoogle Scholar
  38. Ghafoor, A., & Muhammed, S. (1981). Comparison of H2S04, HC1, HN03 and gypsum for reclaiming calcareous saline-sodic soil and for plant growth. Bull Irrig Drainage Flood Control Res Council (Pakistan), 11, 69–75.Google Scholar
  39. Gismer, M. E., & Gates, T. K. (1988). Estimating saline water table contributions to crop water use. California Agriculture, 42(2), 23–24.Google Scholar
  40. Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255.CrossRefGoogle Scholar
  41. Gong, Z. H., Kiowa, M. A., Cushman, A., Ray, D., Bufford, S., Kore-eda, T. K., Matsumoto, J., Zhu, J. C., Cushman, R. A., & Bressan, H. P. M. (2001). Genes that are uniquely stressed regulated in salt-overly sensitive (sos) mutants. Plant Physiology, 126, 363–375.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gouinguené, S. P., & Turlings, T. C. J. (2002). The effect of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 129, 1296–1307.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goyal, S. S., Sharma, S. K., Rains, D. W., & Lauchli, A. (1999). Long term reuse of drainage waters of varying salinity for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California–A nine year study. I cotton. Journal of Crop Production, 2, 181–214.CrossRefGoogle Scholar
  44. Graifenberg, A., Botrini, L., Giustiniani, L., & Lipucci di Paola, M. (1996). Yield growth and elemental content of zucchini squash grown under saline-sodic conditions. Journal of Horticultural Science, 71, 305–311.CrossRefGoogle Scholar
  45. Gurung, T. R., & Azad, A. K. (2013). Best practices and procedures of saline soil reclamation systems in SAARC countries (pp. 106–151). Dhaka: SAARC Agriculture Centre.Google Scholar
  46. Hadar, Y. (2011). Suppressive compost: When plant pathology met microbial ecology. Phytoparasitica, 39, 311–314.CrossRefGoogle Scholar
  47. Handawela, J. (1982). A study on inland salinity in Mahaweli H area. KRUSHI Quarterly Technical Bulletin for Researchers Extension Workers and Trainers in Agriculture, 5(1), 5–14.Google Scholar
  48. Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8(10), 1855.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Haq, I., Muhammad, B., & Iqbal, F. (2007). Effect of gypsum and farm yard manure on soil properties and wheat crop irrigated with brackish water. Soil and Environ, 26(2), 164–171.Google Scholar
  50. Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Narasimha, M., Prasad, V., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. Bio Med Research International, 2014, 1.Google Scholar
  51. Hashem, A., Elsayed, F., Abd_Allah, A. A., Alqarawi, A. A., Al-Huqail, S. W., & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Plant Science, 7, 1089.Google Scholar
  52. Heuer, B., Meiri, A., & Shalhevet, J. (1986). Salt tolerance of eggplant. Plant and Soil, 95, 9–13.CrossRefGoogle Scholar
  53. Hoitink, H. A. L., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93(2), 281–289.CrossRefGoogle Scholar
  55. Hussain, N., Ali, A., Salim, M., & Nasim, A. R. (2000a). Management of saline sodic soil irrigated with brackish ground water employing gypsum and soil ripping. International Journal of Agriculture and Biology, 2(1), 69–73.Google Scholar
  56. Hussain, N., Ali, A., Salim, M., & Nasim, A. R. (2000b). Sodic water management with gypsum application for sustainable crop production. Pakistan Journal of Biological Sciences, 3(6), 996–997.CrossRefGoogle Scholar
  57. Kaffka, S., Dauxe, D., & Peterson, G. (1999). Saline water can be used to irrigate sugar beets but sugar may be low. California Agriculture, 53(1), 11–15.CrossRefGoogle Scholar
  58. Kahloon, M. A., & Gill, M. A. (2003). Managing saline sodic ground water in Indus Basin. Science Vision, 9(1-2), 1–10.Google Scholar
  59. Kim, H., Fonseca, J. M., Choi, J., Kubota, C., & Kwon, D. Y. (2008). Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L). Journal of Agricultural and Food Chemistry, 56, 3772–3776.PubMedCrossRefGoogle Scholar
  60. Kim, H., Hanseok, J., Jeon, J., & Bae, S. (2016). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Journal of Water, 8, 127.CrossRefGoogle Scholar
  61. Kumamoto, J., Scora, R. W., Clerx, W. A., Matsumura, M., Layfield, D., & Grieve, C. M. (1992). Purslane: A potential new vegetable crop rich in omega-3 fatty acid with a controllable sodium chloride content. In Proceedings of the first international conference on New Industrial Crops and Products, Riverside CA. pp. 229–233.Google Scholar
  62. Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1–3), 29–37.PubMedCrossRefGoogle Scholar
  63. Lui, J., & Zhu, J. K. (1998). A calcium sensor homologue required for salt tolerance in crop plants. Science, 280, 1943–1945.CrossRefGoogle Scholar
  64. Magdalena, M. J., & Christa, T. (2015). Tuning plant signaling and growth to survive. Trends in Plant Science, 20(9), 586–594.CrossRefGoogle Scholar
  65. Martinez, C., Avis, T. J., Simard, J. N., Labonte´, J., Be’langer, R. R., & Tweddell, R. J. (2006). The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf. Phytoprotection, 87, 69–75.CrossRefGoogle Scholar
  66. Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.PubMedCrossRefGoogle Scholar
  67. McKenzie, R. C. (1988). Tolerance of plants to soil salinity. In Proceedings of the Dryland Salinity Control Workshop, Calgary, Alberta. pp. 246–251.Google Scholar
  68. McNeil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmo protectants. Targets for metabolic engineering of stress tolerance. Plant Physiology, 120, 945–949.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347.CrossRefGoogle Scholar
  70. Meng, X., Zhou, J., & Sui, N. (2018). Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci., 13, 149–115.CrossRefGoogle Scholar
  71. Milner, J. L., Stohl, E. A., & Handelsman, J. (1996a). Zwittermicin a resistance gene from Bacillus cereus. Journal of Bacteriology, 178, 4266–4272.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Milner, J. L., Silo-Suh, L. A., Lee, J. C., He, H., Clardy, J., & Handelsman, J. (1996b). Production of Kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology, 60, 2553–2560.Google Scholar
  73. Minhas, P. S., & Bajwa, M. S. (2001). Use and management of poor quality waters for the rice–wheat based production system. Journal of Crop Production, 4, 273–305.CrossRefGoogle Scholar
  74. Minhas, P. S., & Gupta, R. K. (1992). Quality of irrigation water – Assessment and management (p. 123). New Delhi: Indian Council of Agricultural Research.Google Scholar
  75. Minhas, P. S., Sharma, D. R., & Khosla, B. K. (1990). Mungbean response to irrigation with waters of different salinities. Irrigation Science, 11, 57–62.CrossRefGoogle Scholar
  76. Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Munns, R., & Tester, M. (2008). Mechanism of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.PubMedCrossRefGoogle Scholar
  78. Murtaza, G. A., Owens, G. G., Qadir, M., & Kahlon, U. Z. (2009). Environmental and economic benefits of saline-sodic soil reclamation using low-quality water and soil amendments in conjunction with a rice-wheat cropping system. Journal of Agronomy and Crop Science, 195, 124–136.CrossRefGoogle Scholar
  79. Murtaza, G. B., Murtaza, H. M., & Ghafoor, U. A. (2013). Amelioration of saline-sodic soil using gypsum and low-quality water in following sorghum-berseem crop rotation. International Journal of Agriculture and Biology, 15, 640–648.Google Scholar
  80. Newton, P. J., Myers, B. A., & West, D. W. (1991). Reduction in growth and yield of Jerusalem artichoke caused by soil salinity. Irrigation Science, 12, 213–221.CrossRefGoogle Scholar
  81. Nouri, H., Chavoshi Borujeni, S., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., Saint, C., & Mulcahy, D. (2017). Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environmental Protection, 107, 94–107.CrossRefGoogle Scholar
  82. Ouni, Y., Lakhdar, A., Scelza, R., Scotti, R., Abdelly, C., Barhoumi, Z., & Rao, M. A. (2013). Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecological Engineering, 60, 363–369.CrossRefGoogle Scholar
  83. Patil, P. K., Patil, V. K., & Ghonsikar, C. P. (1984). Effect of soil salinity on growth and nutritional status of guava (Psidium guajava L). International Journal of Tropical Agriculture, 2, 337–344.Google Scholar
  84. Qadir, M., & Oster, J. D. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21, 91–101.CrossRefGoogle Scholar
  85. Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline sodic soils and waters aimed at environmentally sustainable agriculture. The Science of the Total Environment, 323, 1–19.PubMedCrossRefGoogle Scholar
  86. Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.CrossRefGoogle Scholar
  87. Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.CrossRefGoogle Scholar
  88. Rabhi, M., Talbi, O., Atia, A., Chedly, A., & Smaoui, A. (2008). Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In Biosaline agriculture and high salinity tolerance. pp. 242–246.Google Scholar
  89. Rains, D. W., & Goyal, S. S. (2003). Strategies for crop production in saline environments: An overview. Journal of Crop Production, 7(1–2), 1–10.CrossRefGoogle Scholar
  90. Ram, J., Dagar, J. C., Singh, G. B., Lal Khajanchi Tanwar, V. S., Shoeran, S. S., Kaledhonkar, M. J., Dar, S. R., & Kumar, M. (2008). Biodrainage: Ecofriendly technique for combating waterlogging and salinity (Technical bulletin). Karnal: CSSRI.Google Scholar
  91. Rameshwaran, P., Tepe, A., Yazar, A., & Ragab, R. (2015). The effect of saline irrigation water on the yield of pepper: Experimental and modeling study. Irrigation and Drainage, 64, 41–49.CrossRefGoogle Scholar
  92. Rangarajan, S., Saleena, L. M., Vasudevan, P., & Nair, S. (2003). Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 251(1), 73–82.CrossRefGoogle Scholar
  93. Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39(10), 2661–2664.CrossRefGoogle Scholar
  94. Raza, Z. I., Rafiq, M. S., & Rauf, A. (2001). Gypsum application in slots for reclamation of saline sodic soils. International Journal of Agriculture and Biology, 3(3), 281–285.Google Scholar
  95. Reigosa, M. J., Pedrol, N., Sánchez-Moreiras, A., & González, L. (2002). Stress and allelopathy. In M. Reigosa & N. Pedrol (Eds.), Allelopathy from molecules to ecosystems (pp. 231–256). Enfield: Science Publishers.Google Scholar
  96. Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production (FAO’s irrigation and drainage, paper no 48). Rome: FAO.Google Scholar
  97. Ruiz-Lozano, J. M., Azcon, R., & Gomez, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.CrossRefGoogle Scholar
  98. Samad, M. D., Merrey, D., Vermillion, D., Fuchs-Carsh, M., Mohtadullah, K., & Lenton, R. (1992). Irrigation management strategies for improving the performance of irrigated agriculture. Outlook on Agriculture, 21, 279–286.CrossRefGoogle Scholar
  99. Seckler, D., Molden, D., & Barker, R. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development, 4, 34–45.Google Scholar
  100. Sharma, D. P., & Rao, K. V. G. K. (1996). Recycling drainage effluent for crop production In Proceedings of workshop on Waterlogging and Salinity in Irrigated Agriculture. 12–15 March 1996, CSSRI Karnal, pp. 134–147.Google Scholar
  101. Sharma, D. R., Sharma, D. K., & Minhas, P. S. (1993). Feasibility studies on use of saline/sodic waters in conjunction with canal water and amendments. In N. K. Tyagi, S. K. Kamra, P. S. Minhas, & N. T. Singh (Eds.), Sustainable irrigation in saline environment (pp. 110–117). Karnal: CSSRI.Google Scholar
  102. Sharma, D. R., Minhas, P. S., & Sharma, D. K. (2001). Response of rice–wheat to sodic irrigation and gypsum application. Journal of the Indian Society of Soil Science, 49(2), 324–327.Google Scholar
  103. Sirisena, D. N., Rathnayake, W. M. U. K., Herath, H. M. E., & Atapattu, K. B. (2011). Productivity improvement of saline rice lands in lands in Polonnaruwa district. Annals of Sri Lanka Department of Agriculture, 13, 113–125.Google Scholar
  104. Tyagi, N. K. (2001). Managing salinity in northwest India: some short and long term options. In Proceedings international conference on Agricultural Science and Technology, Beijing. 7–9 September 2001.Google Scholar
  105. Tyagi, N. K. (2003). In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Oxon: CAB International.Google Scholar
  106. Tyagi, N. K., & Sharma, D. P. (2000). Disposal of drainage water: recycling and reuse. In Proceedings 8th ICID International Drainage Workshop New Delhi, 31 Jan–4 Feb 2000. 3: 199–213.Google Scholar
  107. Umali, D. (1993). Irrigation-induced salinity: A growing problem for development and environment. In Key trends in feeding the world. Washington, DC: World Bank.Google Scholar
  108. Ünlükara, A., Cemek, B., Karaman, S., & Ersahin, S. (2008). Response of lettuce (Lactuca sativa var Crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36, 263–271.CrossRefGoogle Scholar
  109. Vijayasatya, N., Chaganti, & Crohn, D. M. (2015). Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259(260), 45–55.Google Scholar
  110. Weller, D. M., Raaijmakers, J. M., McSpadden, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.PubMedCrossRefGoogle Scholar
  111. Yadav, J., Verma, J. P., Jaiswal, D. K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123–128.CrossRefGoogle Scholar
  112. Yermiyahu, U., Nir, S., Benhayyim, G., & Kafkafi, U. (1994). Quantitative competition of calcium with sodium or magnesium for sorption sites on plasma-membrane vesicles of melon (Cucumis melo L) root-cells. The Journal of Membrane Biology, 138, 55–63.PubMedCrossRefGoogle Scholar
  113. Yogev, A., Raviv, M., Hadar, Y., Cohen, R., Wolf, S., Gil, L., & Katan, J. (2010). Induced resistance as a putative component of compost suppressiveness. Biological Control, 54, 46–51.CrossRefGoogle Scholar
  114. Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48, 191–206.CrossRefGoogle Scholar
  115. Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.PubMedCrossRefGoogle Scholar
  116. Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98, 12832–12836.CrossRefGoogle Scholar
  117. Zia, M. H., Ghafoor, A., & Saifullah, B. T. M. (2006). Comparison of sulphurus acid generator and alternate amendment to improve the quality of saline-sodic waters for sustainable rice yield. Paddy and Water Environment, 4, 153–162.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, Faculty of Applied SciencesSouth Eastern University of Sri LankaSammanthuraiSri Lanka
  2. 2.Department of Plant Sciences, Faculty of AgricultureRajarata University of Sri LankaAnuradhapuraSri Lanka

Personalised recommendations