Organic Soil Amendments: Potential Tool for Soil and Plant Health Management

  • Rizwan Ali Ansari
  • Aisha Sumbul
  • Rose Rizvi
  • Irshad Mahmood


Utilization of organic matter as a chief substrate for agricultural crops and beneficial microorganisms is gaining interest of plant pathologists, agronomists, manufacturing and processing industries, regulators, growers, tycoons and consumers. These organic inputs provide energy and nutrients to soil leading to a considerable change in the environment which becomes appropriate for survival of crops and proliferation of microorganisms. More likely, this exercise is further reinforced by the consumers’ demand as they are more conscious towards their health. Moreover, use of organic matter rather than disposal is preferred because it imparts in the market value and recycles back to the land leading towards the enhanced sustainable agricultural system. Various types of organic materials are now available and growers have been familiar with these wastes. However, efficacious nature of each organic matter is different maybe partly due to their chemical constituents, types, origin and duration of decomposition. Henceforth, the results of these natural products are inconsistent from site to site as well as from field to field. Similarly, there is no single mechanism which can advocate the queries prudently pertaining to disease management caused by various soilborne plant pathogens. Some common instances have, however, been exemplified like secretion of pathogen toxic compounds, alteration in soil physico-chemical properties, enhanced microbial activities and induction of host resistance against wide spectrum of soilborne pathogens. Moreover, soil is indistinct part of the ecosystem which may regulate the plants response. Application of low rate of organics is suggested as this will be affordable to the growers. In our opinion, this may be possible through appropriate site selection, formulation, storage and handling as well as consortia of organic matter with other compatible modules. Major problem in the adoption of this technology is insufficient supply of ready-made organics which needs a prudent optimization in order to attain sustainable agriculture.


Soil Organic inputs Microorganisms Physico-chemical properties Disease suppression Growth enhancer 


  1. Abbasi, P. A., Al-Dahmani, J., Sahin, F., Hoitink, H. A. J., & Miller, S. A. (2002). Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Disease, 86(2), 156–161.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abbasi, M. K., Zafar, M., & Khan, S. R. (2007). Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir. Nutrient Cycling in Agroecosystems, 78(1), 97–110.CrossRefGoogle Scholar
  3. Abiven, S., Menassero, S., & Chenu, C. (2009). The effect of organic inputs over time on soil aggregate stability – A literature analysis. Soil Biology and Biochemistry, 41, 1–12.CrossRefGoogle Scholar
  4. Acharya, B. S., Rasmussen, J., & Eriksen, J. (2012). Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems & Environment, 153, 33–39.CrossRefGoogle Scholar
  5. Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresource Technology, 74, 5–47.CrossRefGoogle Scholar
  6. Akram, M., Rizvi, R., Sumbul, A., Ansari, R. A., & Mahmood, I. (2016). Potential role of bio-inoculants and organic matter for the management of root-knot nematode infesting chickpea. Cogent Food & Agriculture, 2(1), 1183457.CrossRefGoogle Scholar
  7. Alabouvette, C. (1999). Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australasian Plant Pathology, 28, 57–64. Scholar
  8. Alabouvette, C., Backhouse, D., Steinberg, C., Donovan, N. J., Edel-Hermann, V., & Burgess, L. W. (2004). Microbial diversity in soil: Effects on crop health. In P. Schjonning, S. Elmholt, & B. T. Christensen (Eds.), Managing soil quality: Challenges in modern agriculture (pp. 121–138). Wallingford: CAB International.CrossRefGoogle Scholar
  9. Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43–48.CrossRefGoogle Scholar
  10. Alkooranee, J. T., Aledan, T. R., Ali, A. K., Lu, G., Zhang, X., Wu, J., Fu, C., & Li, M. (2017). Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One, 12(1), 1–21.CrossRefGoogle Scholar
  11. Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3(5), 336–340.CrossRefGoogle Scholar
  12. Alsanius, B. W., Blok, C., Cuijpers, W. J., França, S. C., Fuchs, J. G., Janmaat, L., Raviv, M., Streminska, M. A., Termorshuizen, A. J., & van der Wurff, A. W. (2016). Handbook for composting and compost use in organic horticulture. Bio Greenhouse COST Action FA 1105.Google Scholar
  13. Al-Turki, A. I. (2010). Quality assessment of commercially produced composts in Saudi Arabia market. International Journal of Agricultural Research, 5, 70–79.CrossRefGoogle Scholar
  14. Anonymous. (2017). Pests eat away 35% of total crop yield, says ICAR scientist.
  15. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  16. Ansari, R. A., Mahmood, I., Rizvi, R., Sumbul, A., & Safiuddin. (2017a). Siderophores: Augmentation of soil health and crop productivity. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics in agroecosystem. Singapore: Springer. (in press).Google Scholar
  17. Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017b). PGPR: Current vogue in sustainable crop production. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health. Singapore: Springer. (in press).Google Scholar
  18. Arvanitoyannis, I. S., Ladas, D., & Mavromatis, A. (2006). Potential uses and applications of treated wine waste: A review. The International Journal of Food Science & Technology, 41(5), 475–487.CrossRefGoogle Scholar
  19. Aviles, M., Borrero, C., & Trillas, M. I. (2011). Review on compost as an inducer of disease suppression in plants grown in soilless culture. Dynamic Soil, Dynamic Plant, 5, 1–11.Google Scholar
  20. Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72, 169–180.CrossRefGoogle Scholar
  21. Baker, R., & Cook, J. (1974). Biological control of plant pathogens. San Francisco: W.H. Freeman, 433p.Google Scholar
  22. Bangar, K. S., Parmar, B. B., & Maini, A. (2000). Effect of nitrogen and press mud application on yield and uptake of N, P and K by sugarcane (Saccharum officinarum L.). Crop Research, 19(2), 198–203.Google Scholar
  23. Bauer, A., & Black, A. L. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58(1), 185–193.CrossRefGoogle Scholar
  24. Beck-Friis, B., Pell, M., Sonesson, U., Jönsson, H., & Kirchmann, H. (2000). Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environmental Monitoring and Assessment, 62, 317–331.CrossRefGoogle Scholar
  25. Bender, G. S., Casale, W. L., & Rahimian, M. (1992). Use of worm-composted sludge as a soil amendment for avocados in Phytophthora-infested soil. In Proceeding of Second World Avocado Congress, Orange, CA, USA, p. 143.Google Scholar
  26. Bernard, E., Larkin, R. P., Tavantzis, S., Erich, M. S., Alyokhin, A., & Gross, S. (2014). Rapeseed rotation, compost, and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant and Soil, 374, 611–627.CrossRefGoogle Scholar
  27. Berthrong, S. T., Buckley, D. H., & Drinkwater, L. E. (2013). Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microbial Ecology, 66, 158–170.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G., & Van Der Hoek, K. W. (2008). Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 42, 6067–6077.CrossRefGoogle Scholar
  29. Bhowmik, A., Fortuna, A. M., Cihacek, L., Bary, A., & Cogger, C. G. (2016). Use of biological indicators of soil health to estimate reactive nitrogen dynamics in long-term organic vegetable and pasture systems. Soil Biology and Biochemistry, 103, 308–319.CrossRefGoogle Scholar
  30. Bhowmik, A., Fortuna, A. M., Cihacek, L. J., Bary, A. I., Carr, P. M., & Cogger, C. G. (2017). Potential carbon sequestration and nitrogen cycling in long-term organic management systems. Renewable Agriculture and Food Systems, 1–13.
  31. Blok, W. J., Lamers, J. G., Termorshuizen, A. J., & Bollen, G. J. (2000). Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90, 253–259.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bokhtiar, S. M., Paul, G. C., Rashid, M. A., & Rahman, A. B. M. (2001). Effect of press mud and organic nitrogen on soil fertility and yield of sugarcane grown in high Ganges river flood plain soils of Bangladesh. Indian Sugar, 51(4), 235–240.Google Scholar
  33. Bonanomi, G., Antignani, V., Capodilupo, M., & Scala, F. (2010). Identifying the characteristics of organic amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry, 42, 136–144.CrossRefGoogle Scholar
  34. Bonanomi, G., D’Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaioli, R., Puopolo, G., Rutigliano, F. A., Scelza, R., Scotti, R., Rao, M. A., & Zoina, A. (2011a). Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Applied Soil Ecology, 47, 187–194.CrossRefGoogle Scholar
  35. Bonanomi, G., Antignani, V., Barile, E., Lanzotti, V., & Scala, F. (2011b). Decomposition of Medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases. Journal of Plant Pathology, 93, 57–69.Google Scholar
  36. Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V., & Mazzoleni, S. (2013). Litter quality assessed by solid state 13 C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biology and Biochemistry, 56, 40–48.CrossRefGoogle Scholar
  37. Bonanomi, G., Capodilupo, M., Incerti, G., & Mazzoleni, S. (2014a). Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant and Soil, 381, 307–321.CrossRefGoogle Scholar
  38. Bonanomi, G., D’Ascoli, R., Scotti, R., Gaglione, S. A., Caceres, M. G., Sultana, S., Scelza, R., Rao, M. A., & Zoina, A. (2014b). Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agriculture, Ecosystems & Environment, 192, 1–7.CrossRefGoogle Scholar
  39. Bonilla, N., Cazorla, F. M., Martínez-Alonso, M., Hermoso, J. M., González-Fernández, J., Gaju, N., Landa, B. B., & de Vicente, A. (2012a). Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant and Soil, 357, 215–226.CrossRefGoogle Scholar
  40. Bonilla, N., Gutierrez-Barranquero, J. A., de Vicente, A., & Cazorla, F. M. (2012b). Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4, 475–491.CrossRefGoogle Scholar
  41. Borrero, C., Trillas, M. I., Ordovás, J., Tello, J. C., & Avilés, M. (2004). Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology, 94, 1094–1101.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In Bacteria in agrobiology: Disease management (pp. 15–47). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  43. Bowles, T. M., Hollander, A. D., Steenwerth, K., & Jackson, L. E. (2015). Tightly-coupled plant-soil nitrogen cycling: Comparison of organic farms across an agricultural landscape. PLoS One, 10(6), e0131888. Scholar
  44. Brunetti, G., Plaza, C., & Senesi, N. (2005). Olive pomace amendment in Mediterranean conditions: Effect on soil and humic acid properties and wheat (Triticum turgidum L.) yield. Journal of Agricultural and Food Chemistry, 53(17), 6730–6737.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Bulluck, L. R., III, & Ristaino, J. B. (2002). Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology, 92(2), 181–189.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Bulluck Iii, L. R., Brosius, M., Evanylo, G. K., & Ristaino, J. B. (2002). Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19, 147–160.CrossRefGoogle Scholar
  47. Burauel, P., & BaBmann, F. (2005). Soils as filter and buffer for pesticides-experimental concepts to understand soil functions. Environmental Pollution, 133, 11–16.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Castano, R., Borrero, C., & Aviles, M. (2011). Organic matter fractions by SP-MAS C-13 NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media. Biological Control, 58, 286–293.CrossRefGoogle Scholar
  49. Ceja-Navarro, J. A., Rivera-Orduña, F. N., Patiño-Zúñiga, L., Vila-Sanjurjo, A., Crossa, J., Govaerts, B., & Dendooven, L. (2010). Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology, 76, 3685–3691. Scholar
  50. Celik, I., Ortas, I., & Kilic, S. (2004). Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78(1), 59–67.CrossRefGoogle Scholar
  51. Cesaro, A., Belgiorno, V., & Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling, 94, 72–79.CrossRefGoogle Scholar
  52. Chae, D. H., Jin, R. D., Hwangbo, H., Kim, Y. H., Kim, Y. W., Park, R. D., Krishnan, H. B., & Kim, K. Y. (2006). Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. BioControl, 51, 339–351.CrossRefGoogle Scholar
  53. Chakraborty, A., Chakrabarti, K., Chakraborty, A., & Ghosh, S. (2011). Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biology and Fertility of Soils, 47, 227–233.CrossRefGoogle Scholar
  54. Chan, Y. C., Sinha, R. K., & Wang, W. (2011). Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 29(5), 540–548.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Chan, M. T., Selvam, A., & Wong, J. W. (2016). Reducing nitrogen loss and salinity during ‘struvite’food waste composting by zeolite amendment. Bioresource Technology, 200, 838–844.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Claassen, V. P., & Carey, J. L. (2006). Comparison of slow-release nitrogen yield from organic soil amendments and chemical fertilizers and implications for regeneration of disturbed sites. Land Degradation and Development, 18, 119–132.CrossRefGoogle Scholar
  57. Clough, A., & Skjemstad, J. O. (2000). Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Australian Journal of Soil Research, 38, 1005–1016.CrossRefGoogle Scholar
  58. Cohen, M. F., Yamasaki, H., & Mazzola, M. (2005). Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biology and Biochemistry, 37, 1215–1227. Scholar
  59. Conn, K. L., Tenuta, M., & Lazarovits, G. (2005). Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology, 95(1), 28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Creamer, N. G., & Baldwin, K. R. (2000). An evaluation of summer cover crops for use in vegetable production systems in North Carolina. Hortscience, 35(4), 600–603.CrossRefGoogle Scholar
  61. Crecchio, C., Curci, M., Mininni, R., Ricciuti, P., & Ruggiero, P. (2004). Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biology and Biochemistry, 36, 1595–1605.CrossRefGoogle Scholar
  62. De Baets, S., Van de Weg, M. J., Lewis, R., Steinberg, N., Meersmans, J., Quine, T. A., Shaver, G. R., & Hartley, I. P. (2016). Investigating the controls on soil organic matter decomposition in tussock tundra soil and permafrost after fire. Soil Biology and Biochemistry, 99, 108–116.CrossRefGoogle Scholar
  63. Delgado, M. M., Martin, J. V., De Imperial, R. M., León-Cófreces, C., & García, M. C. (2010). Phytotoxicity of uncomposted and composted poultry manure. African Journal of Plant Science, 4(5), 151–159.Google Scholar
  64. Dimitrov, M. R., Veraart, A. J., de Hollander, M., Smidt, H., van Veen, J. A., & Kuramae, E. E. (2017). Successive DNA extractions improve characterization of soil microbial communities. PeerJ, 5, e2915. Scholar
  65. Dolliver, H., Gupta, S., & Noll, S. (2008). Antibiotic degradation during manure composting. Journal of Environmental Quality, 37, 1245–1253.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Dotaniya, M. L., Datta, S. C., Biswas, D. R., Dotaniya, C. K., Meena, B. L., Rajendiran, S., & Lata, M. (2016). Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. The International Journal of Recycling of Organic Waste in Agriculture, 5(3), 185–194.CrossRefGoogle Scholar
  67. Douglas, J. T., Aitken, M. N., & Smith, C. A. (2003). Effects of five non-agricultural organic wastes on soil composition, and on the yield and nitrogen recovery of Italian ryegrass. Soil Use and Management, 19, 135–138.CrossRefGoogle Scholar
  68. Downer, A. J., Menge, J. A., & Pond, E. (2001). Association of cellulytic enzyme activities in eucalyptus mulches with biological control of Phytophthora cinnamomi. Phytopathology, 91(9), 847–855.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Drinkwater, L. E., Letourneau, D. K., Workneh, F., van Bruggen, A. H. C., & Shennan, C. (1995). Fundamental differences between conventional and organic tomato agroecosystems in California. Ecological Applications, 5, 1098–1112.CrossRefGoogle Scholar
  70. Edel-Hermann, V., Dreumont, C., Pérez-Piqueres, A., & Steinberg, C. (2004). Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiology Ecology, 47, 397–404.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ebelhar, S. A., Frye, W. W., & Blevins, R. L. (1984). Nitrogen from legume cover crops for no-tillage corn 1. Agronomy Journal, 76(1), 51–55.CrossRefGoogle Scholar
  72. El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J., & Hafidi, A. (2017). Potential applications of olive mill wastewater as biopesticide for crops protection. Science of the Total Environment, 576, 10–21.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Elizabeth, R. (2014). One-third of food is lost or wasted: what can be done. National geographic.
  74. Epstein, E. (2003). Land application of sewage sludge and biosolids. Boca Raton: Lewis Publishers/CRC Press.Google Scholar
  75. Erhart, E., Burian, K., Hartl, W., & Stich, K. (1999). Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. Journal of Phytopathology, 147, 299–305.CrossRefGoogle Scholar
  76. F.A.O. (2011). Global food losses and food waste – Extent, causes and prevention. Rome: FAO. Scholar
  77. Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis, 36(19–20), 2733–2757.CrossRefGoogle Scholar
  78. Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57e59.CrossRefGoogle Scholar
  79. Faye, J. M. (2017). Evaluation of organic amendments for the management of root-knot nematodes (Meloidogyne spp.) of tomato (Solanum Lycopersicum L.). Doctoral dissertation. Department of crop and soil sciences, Kwame Nkrumah University of Science and Technology.Google Scholar
  80. Ferrer, J., Páez, G., Mármol, Z., Ramones, E., Chandler, C., Marın, M., & Ferrer, A. (2001). Agronomic use of biotechnologically processed grape wastes. Bioresource Technology, 76(1), 39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Fox, T., & Fimeche, C. (2013, January). Global food: Waste not, want not. Institute of Mechanical Engineers, London.
  83. Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2016). Soil biology changes as a consequence of organic amendments subjected to a severe drought. Land Degradation & Development, 28(3), 897–905.CrossRefGoogle Scholar
  84. Fu, L., Penton, C. R., Ruan, Y., Shen, Z., Xue, C., Li, R., & Shen, Q. (2017). Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 104, 39–48.CrossRefGoogle Scholar
  85. Galanakis, C. M. (2015). Food waste recovery: Processing technologies and industrial techniques. London: Academic.Google Scholar
  86. Garcia, C., Hernandez, T., Costa, F., & Ceccanti, B. (1994). Biochemical parameters in soils regenerated by the addition of organic wastes. Waste Management and Research, 12(6), 457–466.CrossRefGoogle Scholar
  87. Garcıa-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry, 32, 1907–1913.CrossRefGoogle Scholar
  88. Geier, B. (2007). IFOAM and the history of the international organic movement. InOrganic farming: An international history (pp. 175–186). Wallingford: CAB International.CrossRefGoogle Scholar
  89. Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P., & Sainju, U. M. (2017). Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrative Agriculture, 16(1), 1–15.CrossRefGoogle Scholar
  90. Ghulam, S., Khan, M. J., Usman, K., & Shakeebullah. (2012). Effect of different rates of press mud on plant growth and yield of lentil in calcareous soil. Sarhad Journal of Agriculture, 28(2), 249–252.Google Scholar
  91. Goldstein, J., Pincus, I., & Rynk, R. (2000). Compost use in agriculture. Compost Science & Utilization, 11(2), 94–96.Google Scholar
  92. Gomez, E., Ferreras, L., & Toresani, S. (2006). Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology, 97, 1484–1489. Scholar
  93. Goss, M. J., Tubeileh, A., & Goorahoo, D. (2013). A review of the use of organic amendments and the risk to human health. Advances in Agronomy, 120, 275–379.CrossRefGoogle Scholar
  94. Goyal, S., Chander, K., Mundra, M., & Kapoor, K. (1999). Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils, 29, 196–200.CrossRefGoogle Scholar
  95. Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., & Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88, 677–682.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hadar, Y., & Mandelbaum, R. (1992). Suppressive compost for biocontrol of soilborne plant pathogens. Phytoparasitica, 20(1), S113–S116.CrossRefGoogle Scholar
  97. Hadar, Y., & Papadopoulou, K. K. (2012). Suppressive composts: Microbial ecology links between abiotic environments and healthy plants. Annual Review of Phytopathology, 50, 133–153.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hader, Y., Mandelbaum, R., & Gorodecki, B. (1992). Biological control of soilborne plant pathogens by suppressive compost. In E. S. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (pp. 79–83). New York: Plenum Press.CrossRefGoogle Scholar
  99. Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., & McKie, B. G. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509(7499), 218–221.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems & Environment, 123, 1–14.CrossRefGoogle Scholar
  101. Heyman, F., Lindahl, B., Persson, L., Wikström, M., & Stenlid, J. (2007). Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biology and Biochemistry, 39, 2222–2229.CrossRefGoogle Scholar
  102. Hiddink, G. A., van Bruggen, A. H. C., Termorshuizen, A. J., Raaijmakers, J. M., & Semenov, A. V. (2005). Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. European Journal of Plant Pathology, 113, 417–435.CrossRefGoogle Scholar
  103. Hodge, A., Robinson, D., & Fitter, A. H. (2000). Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 5, 304–308.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Hofsetz, K., & Silva, M. A. (2012). Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass & Bioenergy, 4(6), 564–573.CrossRefGoogle Scholar
  105. Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hoitink, H. A. J., Boehm, M. J., & Hadar, Y. (1993). Mechanisms of suppression of soilborne plant pathogens in compost-amended substrates. In H. A. J. Hoitink & H. M. Keener (Eds.), Science and engineering of composting (pp. 601–621). Worthington: Renaissance Publication.Google Scholar
  107. Horrocks, A., Curtin, D., Tregurtha, C., & Meenken, E. (2016). Municipal compost as a nutrient source for organic crop production in New Zealand. Agronomy, 6(2), 35.CrossRefGoogle Scholar
  108. Hu, Z., Xu, C., McDowell, N. G., Johnson, D. J., Wang, M., Luo, Y., Zhou, X., & Huang, Z. (2017). Linking microbial community composition to C loss rates during wood decomposition. Soil Biology and Biochemistry, 104, 108–116.CrossRefGoogle Scholar
  109. Huang, X., Wen, T., Zhang, J., Meng, L., Zhu, T., & Cai, Z. (2015). Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. BioControl, 60(1), 113–124.CrossRefGoogle Scholar
  110. Iovieno, P., Morra, L., Leone, A., Pagano, L., & Alfani, A. (2009). Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biology and Fertility of Soils, 45, 555–561.CrossRefGoogle Scholar
  111. Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39(1), 1–23.Google Scholar
  112. Jindo, K., Chocano, C., Melgares de Aguilar, J., González, D., Hernandez, T., & García, C. (2016). Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction, and humification process. Communications in Soil Science and Plant Analysis, 47(16), 1907–1919.Google Scholar
  113. Johnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150, 107–124.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Johnston, A. E., Poulton, P. R., & Coleman, K. (2009). Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy, 101, 1–57.CrossRefGoogle Scholar
  115. Jouquet, E. P., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Rumpel, C., & Duc, T. T. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Science & Utilization, 19(1), 15–24.CrossRefGoogle Scholar
  116. Jowit, J. (2007). Call to use leftovers and cut food waste.
  117. Juul, S. (2016). Will Denmark win the global race against food waste? The Huffington Post.
  118. Kammerer, D., Claus, A., Carle, R., & Schieber, A. (2004). Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry, 52, 4360–4367.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems & Environment, 148, 22–28.CrossRefGoogle Scholar
  120. Kaur, C., & Verma, G. (2016). Effect of different organic sources and their combinations on weed growth and yield of wheat (Triticum aestivum). The Indian Journal of Agricultural Sciences, 50(5), 491–494.Google Scholar
  121. Keswani, C., Bisen, K., Chitara, M. K., Sarma, B. K., & Singh, H. B. (2017). Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. In Agro-environmental sustainability (pp. 63–79). Cham: Springer International Publishing.CrossRefGoogle Scholar
  122. Khaliq, A., & Abbasi, M. K. (2015). Improvements in the physical and chemical characteristics of degraded soils supplemented with organic–inorganic amendments in the Himalayan region of Kashmir, Pakistan. Catena, 126, 209–219.CrossRefGoogle Scholar
  123. Khan, M. R., Jain, R. K., Ghule, T. M., & Pal, S. (2014). Root knot nematodes in India. A comprehensive monograph. All India Co-ordinated Research Project on Plant Parasitic Nematodes with Integrated Approach for their control. Indian Agricultural Research Institute, New Delhi, pp 78.Google Scholar
  124. Kirchmann, H., & Lundvall, A. (1993). Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biology and Fertility of Soils, 15, 161–164.CrossRefGoogle Scholar
  125. Klein, E. (2011). Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Disease, 95(9), 1116–1123. Scholar
  126. Kumar, S. (2016). Municipal solid waste management in developing countries. Boca Raton: CRC Press, Taylor and Francis Group.CrossRefGoogle Scholar
  127. Kumar, K., Rosen, C. J., Gupta, S. C., & McNearney, M. (2009). Land application of sugar beet by-products: Effects on nitrogen mineralization and crop yields. Journal of Environmental Quality, 38, 319–328.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29–37.PubMedCrossRefGoogle Scholar
  129. Lal, R. (2005). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation and Development, 17, 197–209.CrossRefGoogle Scholar
  130. Lampkin, N. (1990). Organic farming. Ipswich: Farming Press Books.Google Scholar
  131. Lazarovits, G. (2001). Management of soil-borne plant pathogens with organic amendments: A disease control strategy salvaged from the past. Canadian Journal of Plant Pathology, 23, 1–7.CrossRefGoogle Scholar
  132. Lazarovits, G. (2010). Managing soilborne disease of potatoes using ecologically based approaches. The American Journal of Potato Research, 87(5), 401–411.CrossRefGoogle Scholar
  133. Lazarovits, G., & Subbarao, K. (2010). Challenges in controlling Verticillium wilt by the use of nonchemical methods. In U. Gisi, I. Chet, & L. Gullino (Eds.), Recent developments in management of plant diseases (pp. 247–264). Dordrecht: Springer.CrossRefGoogle Scholar
  134. Lazarovits, G., Conn, K. L., Abbasi, P. A., & Tenuta, M. (2005). Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae, 698, 215.CrossRefGoogle Scholar
  135. Leroy, B. L. M., Herath, H. M. S. K., Sleutel, S., De Neve, S., Gabriels, D., Reheul, D., & Moens, M. (2008). The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use and Management, 24(2), 139–147.CrossRefGoogle Scholar
  136. Lewis, J. A., & Papavizas, G. C. (1991). Biocontrol of plant diseases: The approach for tomorrow. Crop Protection, 10(2), 95–105.CrossRefGoogle Scholar
  137. Li, R., Tao, R., Ling, N., & Chu, G. (2017). Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil & Tillage Research, 167, 30–38.CrossRefGoogle Scholar
  138. Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 123, 45–51.CrossRefGoogle Scholar
  139. Liebig, M. A., Morgan, J. A., Reeder, J. D., Ellert, B. H., Gollany, H. T., & Schuman, G. E. (2005). Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil and Tillage Research, 83(1), 25–52.CrossRefGoogle Scholar
  140. Lockwood, J. L. (1990). Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In D. Hornby (Ed.), Biological control of soilborne plant pathogens (pp. 197–214). Wallingford: CAB International.Google Scholar
  141. Lucas, S. T., D’Angelo, E. M., & Williams, M. A. (2014). Improving soil structure by promoting fungal abundance with organic soil amendments. Applied Soil Ecology, 75, 13–23.CrossRefGoogle Scholar
  142. Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance-current assessment. Journal of Irrigation and Drainage, 103, 115–134.Google Scholar
  143. Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Malandraki, I., Tjamos, S. E., Pantelides, I. S., & Paplomatas, E. J. (2008). Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biological Control, 44(2), 180–187.CrossRefGoogle Scholar
  145. Martin, F. N. (2003). Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 41, 325–350.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Martínez-Blanco, J., Lazcano, C., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., Antón, A., & Boldrin, A. (2013). Compost benefits for agriculture evaluated by life cycle assessment: A review. Agronomy for Sustainable Development, 33(4), 721–732.CrossRefGoogle Scholar
  147. Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek, 81, 557–564, Kluwer Academic Publishers, Netherlands.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Mazzola, M. (2004). Assessment and management of soil microbial community structure for disease suppression. Annual Review of Phytopathology, 42, 35–59.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Mishra, S., Wang, K. H., Sipes, B., & Tian, M. (2017). Suppression of root-knot nematode by vermicompost tea prepared from different curing ages of vermicompost. Plant Disease (ja).
  150. Misra, R. V., Roy, R. N., & Hiraoka, H. (2016). On-farm composting methods. Rome: UN-FAO.Google Scholar
  151. Montemurro, F., Maiorana, M., Convertini, G., & Ferri, D. (2007). Alternative sugar beet production using shallow tillage and municipal solid waste fertilizer. Agronomy for Sustainable Development, 27, 129–137.CrossRefGoogle Scholar
  152. Morra, L., Pagano, L., Iovieno, P., Baldantoni, D., & Alfani, A. (2010). Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse conditions. Agronomy for Sustainable Development, 30, 701–709.CrossRefGoogle Scholar
  153. Muchovej, R. M., & Obreza, T. A. (2001). Biosolids: Are these residuals all the same? Fact Sheet, SS-AGR-167.Google Scholar
  154. Muchovej, R. M. C., & Pacovsky, R. S. (1997). Future directions of by-products and wastes in agriculture. In J. E. Rechcigl, & H. C. MacKinnon (Eds.), Agricultural uses of by-products and wastes (ACS symposium series, pp. 1–19). Washington, DC:American Chemical Society.Google Scholar
  155. Mukhopadhyay, A. N. (2016). Trichoderma for plant disease management: A reality or myth? The International Journal of Tea Science, 8(4), 47–54.Google Scholar
  156. Müller-Lindenlauf, M. (2009). Organic agriculture and carbon sequestration. Possibilities and constrains for the consideration of organic agriculture within carbon accounting systems. Natural Resources Management and Environment Department, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  157. N’Dayegamiye, A., & Tran, T. S. (2001). Effects of green manures on soil organic matter and wheat yields and N nutrition. Canadian Journal of Soil Science, 81(4), 371–382.CrossRefGoogle Scholar
  158. Nannipieri, P., Ceccanti, B., & Grego, S. (1990). Ecological significance of biological activity in soil. Soil Biochemistry, 6, 293–355, Marcel Dekker, New York, USA.Google Scholar
  159. Niggli, U., Fließbach, A., Hepperly, P., & Scialabba, N. (2009). Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems. Ökologie & Landbau, 141, 32–33.Google Scholar
  160. Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology, 40, 157–167.CrossRefGoogle Scholar
  161. Noble, R., & Coventry, E. (2005). Suppression of soil-borne plant diseases with composts: A review. Biocontrol Science and Technology, 15, 3–20.CrossRefGoogle Scholar
  162. Obreza, T. A., & O’Connor, G. A. (2003). The basics of biosolids application to land in Florida. One of a series of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.Google Scholar
  163. Oliveira, B. R., van Laarhoven, K., Smit, M. P., Rijnaarts, H. H., & Grotenhuis, T. (2017). Impact of compost and manure on the ripening of dredged sediments. Journal of Soils and Sediments, 17(2), 567–577.CrossRefGoogle Scholar
  164. Ouni, Y., Lakhdar, A., Scelza, R., Scotti, R., Abdelly, C., Barhoumi, Z., & Rao, M. A. (2013). Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecological Engineering, 60, 363–369.CrossRefGoogle Scholar
  165. Pane, C., Spaccini, R., Piccolo, A., Scala, F., & Bonanomi, G. (2011). Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control, 56, 115–124.CrossRefGoogle Scholar
  166. Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Scientia Horticulturae, 202, 117–124.CrossRefGoogle Scholar
  167. Paplomatas, E. J., Tjamos, S. E., Malandrakis, A. A., Kafka, A. L., & Zouvelou, S. V. (2005). Evaluation of compost amendments for suppressiveness against Verticillium wilt of eggplant and study of mode of action using a novel Arabidopsis pathosystem. European Journal of Plant Pathology, 112, 183–189.CrossRefGoogle Scholar
  168. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Pascaud, G., Soubrand, M., Lemee, L., Laduranty, J., El-Mufleh, A., Rabiet, M., & Joussein, E. (2017). Molecular fingerprint of soil organic matter as an indicator of pedogenesis processes in Technosols. Journal of Soils and Sediments, 17(2), 340–351.CrossRefGoogle Scholar
  170. Patni, N. K., & Jui, P. Y. (1987). Changes in solids and carbon content of dairy-cattle slurry in farm tanks. Biological Wastes, 20, 11–34.CrossRefGoogle Scholar
  171. Paz-Ferreiro, J., Trasar-Cepeda, C., Leirós, M. C., Seoane, S., & Gil-Sotres, F. (2009). Biochemical properties in managed grassland soils in a temperate humid zone: Modifications of soil quality as a consequence of intensive grassland use. Biology and Fertility of Soils, 45, 711–722.CrossRefGoogle Scholar
  172. Peacock, A. D., Mullen, M. D., Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., & White, D. C. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 33, 1011–1019.CrossRefGoogle Scholar
  173. Penton, C. R., Gupta, V. V. S. R., Tiedje, J. M., Neate, S. M., Ophel-Keller, K., Gillings, M., Harvey, P., Pham, A., & Roget, D. K. (2014). Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One, 9(4), 1–12.CrossRefGoogle Scholar
  174. Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 38, 460–470.CrossRefGoogle Scholar
  175. Pharand, B., Carisse, O., & Benhamou, N. (2002). Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology, 92, 424–438.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Piccolo, A. (1996). Humus and soil conservation. Humic substances in terrestrial ecosystems (pp. 225–264). Amsterdam: Elsevier.CrossRefGoogle Scholar
  177. Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-diacetylphloroglucinolproducing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11, 144–152.CrossRefGoogle Scholar
  178. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1–2), 341–361.CrossRefGoogle Scholar
  179. Raaijmakers, J. M., Weller, D. M., & Thomashow, L. S. (1997). Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63(3), 881–887.PubMedPubMedCentralGoogle Scholar
  180. Raimbault, B. A., & Vyn, T. J. (1991). Crop rotation and tillage effects on corn growth and soil structural stability. Agronomy Journal, 83(6), 979–985.CrossRefGoogle Scholar
  181. Ramaswamy, J., Prasher, S. O., Patel, R. M., Hussain, S. A., & Barrington, S. F. (2010). The effect of composting on the degradation of a veterinary pharmaceutical. Bioresource Technology, 101, 2294–2299.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Razzaq, A. (2001). Assessing sugarcane filtercake as crop nutrients and soil health ameliorant. Pakistan Sugar Journal, 21(3), 15–18.Google Scholar
  183. Reddy, G. S. (2008). Green leaf manuring and organic farming in: Organic farming in rainfed agriculture: Opportunities and constraints (pp. 74–77). Hyderabad: Central research Institute for Dryland Agriculture.Google Scholar
  184. Rietz, D. N., & Haynes, R. J. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35, 845–854.CrossRefGoogle Scholar
  185. Rizvi, R., Ansari, R. A., Zehra, G., & Mahmood, I. (2015). A farmer friendly and economic IPM strategy to combat root-knot nematodes infesting lentil. Cogent Food & Agriculture, 1(1), 1053214.Google Scholar
  186. Rocha, G. J. M., Martin, C., Soares, I. B., Souto-Maior, A. M., Baudel, H. M., & Moraes, C. A. (2011). Dilute mixed-acid pretreatment of sugarcane bagasse for the ethanol production. Biomass & Bioenergy, 35, 663–670.CrossRefGoogle Scholar
  187. Rodríguez-Kábana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18, 129–135.PubMedPubMedCentralGoogle Scholar
  188. Ros, M., Hernandez, M. T., & Garcìa, C. (2003). Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology and Biochemistry, 35, 463–469.CrossRefGoogle Scholar
  189. Saison, C., Degrange, V., Oliver, R., Millard, P., Commeaux, C., Montange, D., & Le Roux, X. (2006). Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost- borne microbial community. Environmental Microbiology, 8, 247–257. Scholar
  190. Sanmanee, N., Panishkan, K., Obsuwan, K., & Dharmvanij, S. (2011). Study of compost maturity during humification process using UV-spectroscopy. World Academy of Science, Engineering and Technology, 80, 403–405.Google Scholar
  191. Sardar, S., Ilyas, S. U., Malik, S. R., & Javaid, K. (2013). Compost fertilizer production from sugar press mud (SPM). International Journal of Microbiology Research, 1(2), 20–27.Google Scholar
  192. Sarrantonio, M., & Gallandt, E. (2003). The role of cover crops in North American cropping systems. Journal of Crop Production, 8(1–2), 53–74.CrossRefGoogle Scholar
  193. Sarwar, M. A., Ibrahim, M., Tahir, M., Ahmad, K., Khan, Z. I., & Valeem, E. E. (2010). Appraisal of press mud and inorganic fertilizers on soil properties, yield and sugarcane quality. Pakistan Journal of Botany, 42(2), 1361–1367.Google Scholar
  194. Scheuerell, S. J., Sullivan, D. M., & Mahaffee, W. F. (2005). Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology, 95, 306–315.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Schuerell, S. J., & Mahaffee, W. F. (2002). Compost tea: Principles and prospects for disease control. Compost Science & Utilization, 10, 313–338.CrossRefGoogle Scholar
  196. Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., & Rao, M. A. (2015). Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of Soil Science and Plant Nutrition, 15(2), 333–352.Google Scholar
  197. Scotti, R., Conte, P., Berns, A. E., Alonzo, G., & Rao, M. A. (2013). Effect of organic amendments on the evolution of soil organic matter in soils stressed by intensive agricultural practices. Current Organic Chemistry, 17, 2998–3005.CrossRefGoogle Scholar
  198. Serra-Wittling, C., Houot, S., & Alabouvette, C. (1996). Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biology and Biochemistry, 28, 1207–1214.CrossRefGoogle Scholar
  199. Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A., & Blagodatskaya, E. (2017). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biology and Fertility of Soils, 53, 1–15.CrossRefGoogle Scholar
  200. Simon, A., & Sivasithamparam, K. (1989). Pathogen-suppression: A case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biology and Biochemistry, 21, 331–337.CrossRefGoogle Scholar
  201. Singh, M., Singh, A., Singh, S., Tripathi, R. S., Singh, A. K., & Patra, D. D. (2010). Cowpea (Vigna unguiculata L. Walp.) as a green manure to improve the productivity of a menthol mint (Mentha arvensis L.) intercropping system. Industrial Crops and Products, 31(2), 289–293.CrossRefGoogle Scholar
  202. Smith, M. M., Aber, J. D., & Rynk, R. (2016). Heat recovery from composting: A comprehensive review of system design, recovery rate, and utilization. Compost Science & Utilization, 1, 12.Google Scholar
  203. Smolinska, U. (2000). Survival of Sclerotium cepivorum Sclerotia and Fusarium oxysporum Chlamydospores in Soil Amended with Cruciferous Residues. Journal of Phytopathology, 148(6), 343–349.CrossRefGoogle Scholar
  204. St.Martin, C. C. G., & Brathwaite, R. A. I. (2012). Compost and compost teas: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture and Horticulture, 28, 1–33.CrossRefGoogle Scholar
  205. Stark, C. H., Condron, L. M., O’Callaghan, M., Stewart, A., & Di, H. J. (2008). Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments. Soil Biology and Biochemistry, 40, 1352–1363. Scholar
  206. Steinberg, C., Edel-Hermann, V., Alabouvette, C., & Lemanceau, P. (2007). Soil suppressiveness to plant diseases. In J. D. van Elsas, J. C. Jansson, & J. T. Trevors (Eds.), Modern soil microbiology (2nd ed., pp. 455–478). Boca Raton: CRC Press.Google Scholar
  207. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290.CrossRefGoogle Scholar
  208. Sugumaran, M. P., Shanmugam, P. M., Ramasamy, S., & Siddeswaran, K. (2016). Effect of different organic manures on the performance of improved White Ponni in Tamil Nadu. Advanced Life Sciences, 5(8), 3394–3397.Google Scholar
  209. Sumbul, A., Rizvi, R., Mahmood, I., & Ansari, R. A. (2015). Oil-cake amendments: Useful tools for the management of phytonematodes. Asian Journal of Plant Pathology, 9(3), 91–111.CrossRefGoogle Scholar
  210. Szczech, M., & Smolińska, U. (2001). Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. Journal of Phytopathology, 149, 77–82.CrossRefGoogle Scholar
  211. Tamm, L., Thürig, B., Bruns, C., Fuchs, J. G., Köpke, U., Laustela, M., & Weber, F. (2010). Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. European Journal of Plant Pathology, 127(4), 465–481.CrossRefGoogle Scholar
  212. Tejada, M., Dobao, M. M., Benitez, C., & Gonzales, J. L. (2001). Study of composting of cotton residues. Bioresource Technology, 79, 199–202.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38, 1413–1421.CrossRefGoogle Scholar
  214. Tenuta, M., & Lazarovits, G. (2002). Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology, 58, 41–45.Google Scholar
  215. Termorshuizen, A. J., Van Rijn, E., Van Der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A. A., Paplomatas, E. J., Rämert, B., & Ryckeboer J Steinberg, C. (2006). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry, 38(8), 2461–2477.CrossRefGoogle Scholar
  216. Termorshuizen, A. J., van Rijn, E., van der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A. A., Paplomatas, E. J., Rämert, B., Ryckeboer, J., Steinberg, C., & Zmora-Nahum, S. (2007). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry, 38, 2461–2477.CrossRefGoogle Scholar
  217. Thacker, B. (2007). Management of byproduct solids generated in the pulp and paper industry. In Presentation to EPA OSW Staff, Washington, DC, January 23, 2007. USAEPA, Washington DC, USA. pp. 18. Available at: (Cited 12th Feb. 2010; verified 1st August, 2012).
  218. Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72–96.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Thomashow, L. S., Weller, D. M., Bonsall, R. F., & Pierson, L. S. (1990). Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56, 908–912.PubMedPubMedCentralGoogle Scholar
  220. Tian, G., Kang, B. T., & Brussaard, L. (1992). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions decomposition and nutrient release. Soil Biology and Biochemistry, 24, 1051–1060.CrossRefGoogle Scholar
  221. Tilston, E. L., Pitt, D., & Groenhof, A. C. (2002). Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytologist, 154, 731–740.CrossRefGoogle Scholar
  222. Tiquia, S. M., Lloyd, J., Herms, D. A., Hoitink, H. A. J., & Michel, F. C., Jr. (2002). Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 21, 31–48.CrossRefGoogle Scholar
  223. Tiyagi, S. A., Rizvi, R., Mahmood, I., & Khan, Z. (2015). Evaluation of organic matter, bio-inoculants and inorganic fertilizers on growth and yield attributes of tomato with respect to the management of plant-parasitic nematodes. Emirates Journal of Food and Agriculture, 27(8), 602.CrossRefGoogle Scholar
  224. Trankner, A. (1992). Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In E. S. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (pp. 35–42). New York: Plenum Press.CrossRefGoogle Scholar
  225. Tuitert, G., Szczech, M., & Bollen, G. J. (1998). Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology, 88, 764–773.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Twarog, S. (2008). East African Organic Product Standard and more. The World of Organic Agriculture–Statistics and Emerging Trends.Google Scholar
  227. Vallini, G., Bianchin, M. L., Pera, A., & De Bertoldi, M. (1983). Composting agro-industrial byproducts. Byocycle, 24, 43–47.Google Scholar
  228. Van Bruggen, A. H. C., & Finckh, M. R. (2016). Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, 54, 25–54.PubMedCrossRefPubMedCentralGoogle Scholar
  229. van Diepeningen, A. D., de Vos, O. J., Korthals, G. W., & van Bruggen, A. H. (2006). Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology, 31(1), 120–135.CrossRefGoogle Scholar
  230. Van Elsas, J. D., & Costa, R. (2007). Molecular assessment of soil microbial communities with potential for plant disease suppression. In Z. K. Punja, S. H. Boer, & H. Sanfaçon (Eds.), Biotechnology and plant disease management (p. 498). King’s Lynn: CAB International.CrossRefGoogle Scholar
  231. Van Elsas, J. D., & Postma, J. (2007). Suppression of soil-borne phytopathogens by compost. In L. F. Diaz, M. de Bertoldi, W. Bidlingmaier, & E. Stentiford (Eds.), Compost science and technology (pp. 201–204). Amsterdam: Elsevier.CrossRefGoogle Scholar
  232. Venkatakrishnan, D., & Ravichandran, M. (2013). Integrated nutrient management on sugarcane yield and yield attributes. Plant Archives, 13(1), 239–242.Google Scholar
  233. Wang, R., Zhang, Y., Cerdà, A., Cao, M., Zhang, Y., Yin, J., Jiang, Y., & Chen, L. (2017). Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency. Geoderma, 289, 161–168.CrossRefGoogle Scholar
  234. Warren, K. S. (1962). Ammonia toxicity and pH. Nature, 195(4836), 47–49.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E., & Kocowicz, A. (2007). Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry, 39, 1294–1302.CrossRefGoogle Scholar
  236. Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73, 463–469.CrossRefGoogle Scholar
  237. Weller, D. M., Raaijmakers, J. M., McSpadden, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.PubMedCrossRefGoogle Scholar
  238. Whitbread, A. M., Jiri, O., & Maasdorp, B. (2004). The effect of managing improved fallows of Mucuna pruriens on maize production and soil carbon and nitrogen dynamics in sub-humid Zimbabwe. Nutrient Cycling in Agroecosystems, 69(1), 59–71.CrossRefGoogle Scholar
  239. Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., & Lehmann, J. (2016). Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. ISME, 10(12), 2918–2930.CrossRefGoogle Scholar
  240. Willer, H., Yussefi, M., & Sorensen, N. (2010). The world of organic agriculture: Statistics and emerging trends 2008. London: Earthscan.Google Scholar
  241. Williams, D. M., Blanco-Canqui, H., Francis, C. A., & Galusha, T. D. (2017). Organic farming and soil physical properties: An assessment after 40 years. Agronomy Journal, 109(2), 600–609.CrossRefGoogle Scholar
  242. Wortmann, C. S., Isabirye, M., & Musa, S. (2009). Crotalaria ochroleuca as a green manure crop in Uganda. Field Crops Research, 61(2), 97–107.Google Scholar
  243. Xie, Z., Tu, S., Shah, F., Xu, C., Chen, J., Han, D., Liu, G., Li, H., Muhammad, I., & Cao, W. (2016). Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in South China. Field Crops Research, 188, 142–149.CrossRefGoogle Scholar
  244. Yang, Y. J., Dungan, R. S., Ibekwe, A. M., Valenzuela-Solano, C., Crohn, D. M., & Crowley, D. E. (2003). Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 38, 273–281.CrossRefGoogle Scholar
  245. Yogev, A., Raviv, M., Hadar, Y., Cohen, R., & Katan, J. (2006). Plant waste–based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. European Journal of Plant Pathology, 116, 267–278.CrossRefGoogle Scholar
  246. Yogev, A., Raviv, M., Hadar, Y., Cohen, R., Wolf, S., Gil, L., & Katan, J. (2010). Induced resistance as a putative component of compost suppressiveness. Biological Control, 54, 46–51.CrossRefGoogle Scholar
  247. Zaccardelli, M., De Nicola, F., Villecco, D., & Scotti, R. (2013a). The development and suppressive activity of soil microbial communities under compost amendment. Journal of Soil Science and Plant Nutrition, 13, 730–742.Google Scholar
  248. Zaccardelli, M., Villecco, D., Celano, G., & Scotti, R. (2013b). Soil amendment with seed meals: Short term effects on soil respiration and biochemical properties. Applied Soil Ecology, 72, 225–231.CrossRefGoogle Scholar
  249. Zelenev, V. V., Van Bruggen, A. H. C., & Semenov, A. M. (2005). Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microbial Ecology, 49(1), 83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  250. Zhang, W., Dick, W. A., & Hoitink, H. A. J. (1996). Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology, 86, 1066–1070.CrossRefGoogle Scholar
  251. Zhang, H., Ding, W., Yu, H., & He, X. (2015a). Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biology and Fertility of Soils, 51, 137–150.CrossRefGoogle Scholar
  252. Zhang, Z., Zhao, J., Yu, C., Dong, S., Zhang, D., Yu, R., Wang, C., & Liu, Y. (2015b). Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity. Bioresource Technology, 198, 403–409.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Zheng, J., Chen, J., Pan, G., Wang, G., Liu, X., Zhang, X., Li, L., Bian, R., Cheng, K., & Zheng, J. (2017). A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology, 111, 94–104.CrossRefGoogle Scholar
  254. Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X., & Liu, S. (2009). The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. European Journal of Agronomy, 31(1), 36–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rizwan Ali Ansari
    • 1
  • Aisha Sumbul
    • 1
  • Rose Rizvi
    • 1
  • Irshad Mahmood
    • 1
  1. 1.Section of Plant Pathology and Nematology, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations