Advertisement

Plant Responses to Phytonematodes Infestations

  • Atef M. El-Sagheer
Chapter

Abstract

Phytoparasitic nematodes, of which more than 4100 species have been identified worldwide, are obligate parasites that attack a wide range of plants; some of these species reduce global agricultural production. Phytoparasitic nematodes causes negative impact on plant health: Plant growth, germination, morphogenesis, generative growth, and reproductive growth, as well as functional and morphological changes are greatly affected. The feeding behavior and small size of phytoparasitic nematodes sometimes does not lead to the development of characteristic plant signs and symptoms where nematode problems often go completely undiagnosed. This chapter will focus on responses of plant health growing under nematodes infestation. 

Keywords

Phytonematodes Biology Plant health Symptoms Plant biomarkers 

References

  1. Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15(1), 37–47.CrossRefGoogle Scholar
  2. Ahmed, N., Abbasi, M. W., Shaukat, S. S., & Zaki, M. J. (2009). Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica. Phytopathologia Mediterranea, 48(2), 262–268.Google Scholar
  3. Anderson, R. C. (2000). Nematode parasites of vertebrates: Their development and transmission. Wallingford/New York: Cabi.CrossRefGoogle Scholar
  4. Anwar, S. A., & McKenry, M. V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of Zoology, 42(2), 135–141.Google Scholar
  5. Barker, K. R., & Sasser, J. N. (1959). Biology and control of the stem nematode, Ditylenchus dipsaci. Phytopathology, 49(10), 664–670.Google Scholar
  6. Barekye, A., Kashaija, I. N., Tushemereirwe, W. K., & Adipala, E. (2000). Comparison of damage levels caused by Radopholus similis and Helicotylenchus multicinctus on bananas in Uganda. Annals of Applied Biology, 137(3), 273–278.CrossRefGoogle Scholar
  7. Baujard, P., & Martiny, B. (1994). Transport of nematodes by wind in the peanut cropping area of Senegal, West Africa. Fundamental and Applied Nematology, 17(6), 543–550.Google Scholar
  8. Bird, A. F. (1959). The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica, 4(4), 322–335.CrossRefGoogle Scholar
  9. Bohlmann, H., & Sobczak, M. (2014). The plant cell wall in the feeding sites of cyst nematodes. Frontiers in Plant Science, 5, 89.CrossRefGoogle Scholar
  10. Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6), 224–228.CrossRefGoogle Scholar
  11. Cabrera, V. A., Dottori, N., & Doucet, M. E. (2017). Histopathology of roots of three tomato cultivars infected with two separate isolates of the false root-knot nematode Nacobbus aberrans. European Journal of Plant Pathology, 148(2), 393–403.CrossRefGoogle Scholar
  12. Castagnone-Sereno, P., & Danchin, E. G. J. (2014). Parasitic success without sex–the nematode experience. Journal of Evolutionary Biology, 27(7), 1323–1333.Google Scholar
  13. Cayrol, J. C., & Combettes, S. (1972). Histopathological study of the chrysanthemum leaf eelworm disease in monoxenic cultures. Annales de Zoologie-Ecologie Animale, 4(2), 119–128.Google Scholar
  14. Ciancio, A., & Mukerji, K. G. (Eds.). (2007). Integrated management and bio control of vegetable and grain crops nematodes (Vol. 2). Springer Science & Business Media.Google Scholar
  15. Cid, D. P., & Sosa, M. (1978). Occurrence of Aphelenchoides ritzemabosi on the foliage of Chrysanthemum maximum in Mexico. Nematropica, 8.Google Scholar
  16. Cobb, N. A. (1915). Nematodes and their relationships. Washington, DC: U.S. Department of Agriculture.Google Scholar
  17. Cohn, E. (1970). Observations on the feeding and symptomatology of Xiphinema and Longidorus on selected host roots. Journal of Nematology, 2(2), 167–173.PubMedPubMedCentralGoogle Scholar
  18. Cohn, E., Kaplan, D. T., & Esser, R. P. (1984). Observations on the mode of parasitism and histopathology of Meloidodera floridensis and Verutus volvingentis (Heteroderidae). Journal of Nematology, 16(3), 256.PubMedPubMedCentralGoogle Scholar
  19. da Silva, R. V., de Jesus, D. S., de Lima, B. V., de Miranda, B. E. C., & Gondim, J. P. E. (2016). First report of Ditylenchus gallaeformans in Miconia albicans from the Brazilian Cerrado, State of Goiás. Semina: Ciências Agrárias, 37(2), 729–736.Google Scholar
  20. Demmig-Adams, B., & Adams, W. W. (1992). Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell & Environment, 15(4), 411–419.CrossRefGoogle Scholar
  21. Dorofeeva, L. V., Evtushenko, L. I., Krausova, V. I., Karpov, A. V., Subbotin, S. A., & Tiedje, J. M. (2002). Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively. International Journal of Systematic and Evolutionary Microbiology, 52(6), 1917–1923.PubMedGoogle Scholar
  22. Duan, Y. X., Zheng, Y. N., Chen, L. J., Zhou, X. M., Wang, Y. Y., & Sun, J. S. (2009). Effects of abiotic environmental factors on soybean cyst nematode. Agricultural Sciences in China, 8(3), 317–325.CrossRefGoogle Scholar
  23. Duncan, L. W. (2005). Nematode parasites of citrus. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 437–466). Wallingford: CAB International.CrossRefGoogle Scholar
  24. Endo, B. Y. (1991). Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Revue Nematology, 14, 73–94.Google Scholar
  25. Endo, B. Y. (2012). Nematode-induced syncytia (giant cells). Host-parasite relationships of Heteroderidae. Plant Parasitic Nematodes, 2, 91–117.Google Scholar
  26. Favery, B., Quentin, M., Jaubert-Possamai, S., & Abad, P. (2016). Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. Journal of Insect Physiology, 84, 60–69.CrossRefGoogle Scholar
  27. Gheysen, G., & Mitchum, M. G. (2011). How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology, 14(4), 415–421.CrossRefGoogle Scholar
  28. Goodey, T. (1933). Anguillulina graminophila n. sp., a nematode causing galls on the leaves of fine bent-grass. Journal of Helminthology, 11(1), 45–56.CrossRefGoogle Scholar
  29. Goodey, T. (1953). On two new species of nematodes associated with leaf-blotch in Evodía roxburghiana an Indian evergreen tree.Google Scholar
  30. Haverkort, A. J., Fasan, T., & Van de Waart, M. (1991). The influence of cyst nematodes and drought on potato growth. 2. Effects on plant water relations under semi-controlled conditions. European Journal of Plant Pathology, 97(3), 162–170.Google Scholar
  31. Hendry, G. A. F., et al. (1987). The degradation of chlorophyll. A biological enigma. The New Phytologist, 107, 255–302.CrossRefGoogle Scholar
  32. Hussey, S. R., Davis, E. L., & Baum, T. J. (2002). Secrets in secretions: Genes that control nematode parasitism of plants. Brazilian Journal Plant Physiology, 14, 183–194.CrossRefGoogle Scholar
  33. Insunza, B. V., & Valenzuela, A. A. (1995). Control of Ditylenchus dipsaci on garlic (Allium sativum) with extracts of medicinal plants from Chile. Nematropica, 25(1), 35–41.Google Scholar
  34. Ivarson, K. C., & Sowden, F. J. (1969). Free amino acid composition of the plant root environment under field conditions. Canadian Journal of Soil Science, 49(1), 121–127.CrossRefGoogle Scholar
  35. Johnson, H. A., & Powell, N. T. (1969). Influence of root knot nematodes on bacterial wilt development in flue-cured tobacco. Phytopathology, 59, 486–491.Google Scholar
  36. Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B., & Mullineaux, P. M. (2003). Light perception in plant disease defence signalling. Current Opinion in Plant Biology, 6(4), 390–396.CrossRefGoogle Scholar
  37. Khan, M. R. (2008). Plant nematodes: Methodology, morphology, systematics, biology and ecology. Boca Raton: CRC Press.CrossRefGoogle Scholar
  38. Klingler, J. (1965). On the orientation of plant nematodes and of some other soil animals. Nematologica, 11(1), 4–18.CrossRefGoogle Scholar
  39. Koenning, S. R., & Barker, K. R. (1998). Survey of Heterodera glycines races and other plant-parasitic nematodes on soybean in North Carolina. Journal of Nematology, 30(4S), 569.PubMedPubMedCentralGoogle Scholar
  40. Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., & Fortnum, B. A. (1999). Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Journal of Nematology, 31(4S), 587.PubMedPubMedCentralGoogle Scholar
  41. Lehman, P. S. (1991). A disease of gloxinias caused by foliar nematodes», Nematology Circular no. 195. Florida. Department of Agriculture and Consumer Services. Division of Plant Industry.Google Scholar
  42. Lehman, P. S. (1994). Dissemination of phytoparasitic nematodes. Nematology Circular, 208.Google Scholar
  43. Magnusson, C., & Golinowski, W. (1991). Ultrastructural relationships of the developing syncytium induced by Heterodera schachtii (Nematoda) in root tissues of rape. Canadian Journal of Botany, 69(1), 44–52.CrossRefGoogle Scholar
  44. Maleita, C. M. N., Curtis, R. H. C., Powers, S. J., & Abrantes, I. (2012). Host status of cultivated plants to Meloidogyne hispanica. European Journal of Plant Pathology, 133(2), 449–460.CrossRefGoogle Scholar
  45. McClure, M. A. (1977). Meloidogyne incognita: A metabolic sink. Journal of Nematology, 9(1), 88–90.PubMedPubMedCentralGoogle Scholar
  46. McDonald, A. H., & Nicol, J. M. (2005). Nematode parasites of cereals. In: Plant parasitic nematodes in subtropical and tropical agriculture (Vol. 2, pp. 131–192). Wallingford: CABI Cary.Google Scholar
  47. Merrifield, K., & Ingham, R. E. (1998). Nematodes and other aquatic invertebrates in Eurhynchium oreganum from Mary’s peak, Oregon Coast Range. Bryologist, 101, 505–511.CrossRefGoogle Scholar
  48. Montasser, S. A. (1990). Influence of the root knot nematode, Meloidogyne incognita on water absorption, shoot water content and growth of eggplant, Solanum melongena. Al Azhar Journal of Agricultural Research. Google Scholar
  49. Mundo-Ocampo, M. A. N. U. E. L., & Baldwin, J. G. (1984). Comparison of host response of Cryphodera utahensis with other Heteroceridae and a discussion of phylogeny. Proceedings of the Helminthological Society of Washington, 51(1), 25–31.Google Scholar
  50. Nicol, J. M., Turner, S. J., Coyne, D. L., Den Nijs, L., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. InGenomics and molecular genetics of plant-nematode interactions (pp. 21–43). Dordrecht: Springer.CrossRefGoogle Scholar
  51. Pinochet, J., Jaizme, M., Fernández, C., Jaumot, M., & De Waele, D. (1998). Screening bananas for root-knot (Meloidogyne spp.) and lesion nematode (Pratylenchus goodeyi) resistance for the Canary Islands. Fundamental and Applied Nematology, 21(1), 17–24.Google Scholar
  52. Raski, D., & Allen, M. (1948). Spring dwarf nematode. California Agriculture, 2(4), 23–24.Google Scholar
  53. Rivoal, R., & Cook, R. (1993). Nematode pests of cereals. InPlant parasitic nematodes in temperate agriculture. (pp. 259–303). Wallingford: CAB International.Google Scholar
  54. Rodiuc, N., Vieira, P., Banora, M. Y., & de Almeida Engler, J. (2014). On the track of transfer cell formation by specialized plant-parasitic nematodes. Frontiers in Plant Science, 5.Google Scholar
  55. Schans, J. (1991). Reduction of leaf photosynthesis and transpiration rates of potato plants by second-stage juveniles of Globodera pallida. Plant, Cell & Environment, 14(7), 707–712.CrossRefGoogle Scholar
  56. Siddiqi, M. R., & Lenne, J. M. (1984). Pterotylenchus cecidogenus n. gen., n. sp., a new stem-gall nematode parasitizing Desmodium ovalifolium in Colombia. Journal of Nematology, 16(1), 62.PubMedPubMedCentralGoogle Scholar
  57. Siddique, S., Endres, S., Sobczak, M., Radakovic, Z. S., Fragner, L., Grundler, F. M., et al. (2014). Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots. New Phytologist, 201(2), 476–485.CrossRefGoogle Scholar
  58. Sosa-Moss, C., Barker, K. R., & Daykin, M. E. (1983). Histopathology of selected cultivars of tobacco infected with Meloidogyne species. Journal of Nematology, 15(3), 392–397.PubMedPubMedCentralGoogle Scholar
  59. Steiner, G. (1925). The problem of host selection and host specialisation of certain plant infesting nemas and its application in the study of nemic pests. Phytopathology, 15, 499–531.Google Scholar
  60. Subbotin, S. A., Krall, E. L., Riley, I. T., Chizhov, V. N., Staelens, A., De Loose, M., & Moens, M. (2004). Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from internal transcribed spacer sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution, 30(1), 226–235.CrossRefGoogle Scholar
  61. Takamiya, K. I., Tsuchiya, T., & Ohta, H. (2000). Degradation pathway (s) of chlorophyll: What has gene cloning revealed? Trends in Plant Science, 5(10), 426–431.CrossRefGoogle Scholar
  62. Valette, C., Andary, C., Geiger, J. P., Sarah, J. L., & Nicole, M. (1998). Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology, 88(11), 1141–1148.CrossRefGoogle Scholar
  63. Viana, L. R., Silveira, F. A. O., Santos, J. C., Rosa, L. H., Cares, J. E., Café-Filho, A. C., & Fernandes, G. W. (2013). Nematode-induced galls in Miconia albicans: Effect of host plant density and correlations with performance. Plant Species Biology, 28(1), 63–69.CrossRefGoogle Scholar
  64. Viglierchio, D. R. (1961). Attraction of parasitic nematodes by plant root emanations. Phytopathology, 51(3), 136–142.Google Scholar
  65. Vovlas, N. (1987). Parasitism of Trophotylenchulus obscurus on coffee roots. Revue de nématologie, 10(3), 337–342.Google Scholar
  66. Vovlas, N., Troccoli, A., Palomares-Rius, J. E., De Luca, F., Cantalapiedra-Navarrete, C., Liébanas, G., et al. (2016). A new stem nematode, Ditylenchus oncogenus n. sp.(Nematoda: Tylenchida), parasitizing sowthistle from Adriatic coast dunes in southern Italy. Journal of Helminthology, 90(2), 152–165.CrossRefGoogle Scholar
  67. Watson, A. K. (1986). Biology of Subanguina picridis, a potential biological control agent of Russian knapweed. Journal of Nematology, 18(2), 149.PubMedPubMedCentralGoogle Scholar
  68. Wiggers, R. J., Starr, J. L., & Price, H. J. (1990). DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M. arenaria. Phytopathology, 80(12), 1391–1395.CrossRefGoogle Scholar
  69. Williamson, V. M., & Hussey, R. S. (1996). Nematode pathogenesis and resistance in plants. The Plant Cell, 8(10), 1735.CrossRefGoogle Scholar
  70. Winfield, A. L., & Cooke, D. A. (1975). The ecology of Trichodorus. InNematode vectors of plant viruses (pp. 309–341). Boston: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Atef M. El-Sagheer
    • 1
  1. 1.Zoology and Nematology Department, Faculty of AgricultureAl-Azhar UniversityAssiutEgypt

Personalised recommendations