Advertisement

Biocontrol Potential of Trichoderma spp.: Current Understandings and Future Outlooks on Molecular Techniques

  • Shalini Rai
  • Manoj Kumar SolankiEmail author
  • Anjali Chandrol Solanki
  • Kanakala Surapathrudu
Chapter

Abstract

Trichoderma species are ubiquitous ascomycetous fungi that have a wide distribution in diverse ecological zones and display remarkable interactions with other microbes and plants in the rhizosphere. Biotic stress is raised as a major problem in front of the agricultural economist. In this context, Trichoderma strain-based biocontrol practices could help to achieve the goal of sustainable agriculture. Modern biotechnological tool-based analysis locks out the inherent information of Trichoderma persistence in extreme conditions. Advance biotechnological tools have been developed to map the genome and transcriptome of Trichoderma spp. that will unlock the information of novel genes and their significant role in disease protection, abiotic stress tolerance, and plant growth promotion. In the present chapter, we are discussing the molecular mechanisms of Trichoderma that helps the plant in growth promotion as well as pathogen defense.

Keywords

Biocontrol application Molecular prospectus Plant diseases Trichoderma 

References

  1. Abo-Elyousr, K. A., Abdel-Hafez, S. I., & Abdel-Rahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162(9), 567–574.CrossRefGoogle Scholar
  2. Ahuja, D. B., Ahuja, R. U., Srinivas, P., et al. (2012). Development of farmer-led integrated management of major pests of cauliflower cultivated in rainy season in India. The Journal of Agricultural Science, 4(2), 79–90.Google Scholar
  3. Aliferis, K. A., & Jabaji, S. (2010). Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. Journal of Agricultural and Food Chemistry, 58, 7604–7615.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ambuse, M. G., Chatage, V. S., & Bhale, U. N. (2012). Influence of Trichoderma spp. against Alternaria tenuissima inciting leaf spot of Rumex Acetosa L. Bioscience Discovery, 3, 259–262.Google Scholar
  5. Anand, P., Isar, J., Saran, S., et al. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anitha, K. N. (2011). Physiological and biochemical basis of resistance to purple seed stain of soybean Glycine max (L.) Merrill. Karnataka Journal of Agricultural Science, 25(4), 557–608.Google Scholar
  7. Antal, Z., Manczinger, L., Szakacs, G., et al. (2000). Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycological Research, 104, 545–549.CrossRefGoogle Scholar
  8. Bae, H., Sicher, R. C., Kim, M. S., et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bagwan, N. B. (2011). Evaluation of biocontrol potential of Trichoderma species against Sclerotium rolfsii, Aspergillus niger and Aspergillus flavus. Internation Journal of Plant Protection, 4, 107–111.Google Scholar
  10. Bailey, B. A., Bae, H., Strem, M. D., et al. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449–1464.PubMedCrossRefGoogle Scholar
  11. Balaji, L. P., & Ahir, R. R. (2011). Evaluation of plant extracts and biocontrol agents against leaf spot disease of brinjal. Indian Phytopathology, 64(4), 378–380.Google Scholar
  12. Baroncelli, R., Zapparata, A., Piaggeschi, G., et al. (2016). Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announcements, 4(1), e01747–e01715.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bartnicki-García, S. (1968). Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology, 22, 87–108.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Basu, A. (2009). Employing eco-friendly potato disease management allows organic tropical Indian production systems to prosper. Asian Journal of Food and Agro-Industry, Special Issue, S80–S87.Google Scholar
  15. Bebber, D. P. (2015). Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology, 53, 335–356.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Begum, M. F., Rahman, M. A., & Alam, M. F. (2010). Biological control of Alternaria fruit rot of chili by Trichoderma species under field conditions. Mycobiology, 38(2), 113–117.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Benítez, T., Delgado-Jarana, J., Rincón, A. M., Rey, M., & Limón, M. C. (1998). Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In S. G. Pandalai (Ed.), Recent research developments in microbiology (Vol. 2, pp. 129–150). Trivandrum: Research Signpost.Google Scholar
  18. Benitez, T., Rincon, A. M., Limon, M. C., et al. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.PubMedPubMedCentralGoogle Scholar
  19. Bhat, K. A., Ali, A., & Wani, A. H. (2009). Evaluation of biocontrol agents against Rhizoctonia solani Kuhn and sheath blight disease of rice under temperate ecology. Plant Diseases Research, 24(1), 15–18.Google Scholar
  20. Bhatnagar-Mathur, P., Vadez, V., & Sharma, K. K. (2008). Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Reports, 27(3), 411–424.  https://doi.org/10.1007/s00299-007-0474-9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Biswas, K. K., & Sen, C. (2000). Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopathology, 53(3), 290–295.Google Scholar
  22. Błaszczyk, L., Popiel, D., Chełkowski, J., et al. (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233–243.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brian, P. W., & Hemming, H. G. (1945). Gliotoxin, a fungistatic metabolic product of Trichoderma viride. The Annals of Applied Biology, 32, 214–220.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brotman, Y., Briff, E., Viterbo, A., & Chet, I. (2008). Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology, 147, 779–789.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brotman, Y., Landau, U., Cuadros-Inostroza, Á., et al. (2013). Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9, e1003221.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bushley, K. E., & Turgeon, B. G. (2010). Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evolutionary Biology, 10, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carsolio, C., Benhamou, N., Haran, S., et al. (1999). Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology, 65, 929–935.PubMedPubMedCentralGoogle Scholar
  28. Chakravarthy, S., Nagamani, K., Ratnakumari, A. R., et al. (2011). Antagonistic ability against Rhizoctonia solani and pesticide tolerance of Trichoderma strains. Advances in Environmental Biology, 5(9), 2631–2638.Google Scholar
  29. Chawla, N., & Gangopadhyay, S. (2009). Integration of organic amendments and bioagents in suppressing cumin wilt caused by Fusarium oxysporum f. sp. cumini. Indian Phytopathology, 62(2), 209–216.Google Scholar
  30. Cohen-Kupiec, R., Broglie, K. E., Friesem, D., et al. (1999). Molecular characterization of a novel β-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene, 226, 147–154.PubMedCrossRefGoogle Scholar
  31. Coley-Smith, J. R., Ghaffar, A., & Javed, Z. U. R. (1974). The effect of dry conditions on subsequent leakage and rotting of fungal sclerotia. Soil Biology and Biochemistry, 6, 307–312.CrossRefGoogle Scholar
  32. Contreras-Cornejo, H. A., Macias-Rodríguez, L., Cortés-Penagos, C., et al. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Contreras-Cornejo, H. A., Macías-Rodríguez, L., del Val, E., et al. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology, 92, fiw036.PubMedCrossRefGoogle Scholar
  34. Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I., & Herrera Estrella, A. (1998). The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Molecular & General Genetics, 260, 218–225.CrossRefGoogle Scholar
  35. Cruz, J., Pintor-Toro, J. A., Benítez, T., et al. (1995). A novel endo-b-1, 3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. Journal of Bacteriology, 77(23), 6937–6945.CrossRefGoogle Scholar
  36. da Silva, L. C., Honorato, T. L., Cavalcante, R. S., Franco, T. T., & Rodrigues, S. (2012). Effect of pH and temperature on enzyme activity of chitosanase produced under solid stated fermentation by Trichoderma spp. Indian Journal of Microbiology, 52, 60–65.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Degenkolb, T., Gräfenhan, T., Berg, A., et al. (2006). Peptaibiomics: Screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chemistry and Biodiversity, 3, 593–610.PubMedCrossRefGoogle Scholar
  38. Degenkolb, T., Dieckmann, R., Nielsen, K. F., et al. (2008). The Trichoderma brevicompactum clade: A separate lineage with new species, new peptaibiotics, and mycotoxins. Mycological Progress, 7, 177–219.CrossRefGoogle Scholar
  39. Delgado-Jarana, J., Rincon, A. M., & Benitez, T. (2002). Aspartyl protease from Trichoderma harzianum CECT 2413: Cloning and characterization. Microbiology, 148, 1305–1315.PubMedCrossRefGoogle Scholar
  40. Dilbo, C., Alemu, M., Lencho, A., & Hunduma, T. (2015). Integrated Management of Garlic White rot (Sclerotium cepivorum Berk) using some fungicides and antifungal Trichoderma species. Journal of Plant Pathology & Microbiology, 6(1), 251.  https://doi.org/10.4172/2157-7471.1000251.CrossRefGoogle Scholar
  41. Djonovic, S., Pozo, M. J., Dangott, L. J., et al. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19, 838–853.PubMedCrossRefGoogle Scholar
  42. Djonovic, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145, 875–889.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Domínguez, S., Rubio, M. B., Cardoza, R. E., et al. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans Acetamidase amdS gene. Frontiers in Microbiology, 7, 1182.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Donoso, E. P., Bustamante, R. O., Carú, M., et al. (2008). Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Applied and Environmental Microbiology, 74, 1412–1417.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Donzelli, B. G. G., Lorito, M., Scala, F., et al. (2001). Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene, 277, 199–208.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Druzhinina, I. S., Kubicek, C. P., Komón-Zelazowska, M., et al. (2011). The Trichoderma harzianum demon: Complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology, 10, 94.CrossRefGoogle Scholar
  47. Dubey, S. C., & Patel, B. (2001). Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathology, 54(2), 206–209.Google Scholar
  48. Dubey, S. C., Tripathi, A., Bhavani, R., & Singh, B. (2011). Evaluation of seed dressing and soil application formulations of Trichoderma species for integrated management of dry root rot of chickpea. Biocontrol Science and Technology, 21, 93–100.CrossRefGoogle Scholar
  49. Elad, Y., Freeman, S., & Monte, E. (Eds.). (2000). Biocontrol agents: Mode of action and interaction with other means of control (IOBC WPRS Bulletin) (Vol. 24). España: Sevilla.Google Scholar
  50. El-Fiky, Z. A., Shalaby, O. Y., & Ahmed, N. F. (2006). Characterization of some Trichoderma isolates antagonistic to Rhizoctonia solani the causal of bean root rot. Proceeding of the second conference on farm integrated pest management 16–18 Jan 2006 (pp. 154–171).Google Scholar
  51. El-Katatny, M. H., Gudelj, M., Robra, K. H., et al. (2001). Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology, 56, 137–143.PubMedCrossRefPubMedCentralGoogle Scholar
  52. El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2014). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathology Journal, 31(1), 50–60.CrossRefGoogle Scholar
  53. Evidente, A., Cabras, A., Maddau, L., et al. (2003). Videpyronone, a new antifungal 6-substituted 2H-pyran-2-one produce by Trichoderma viride. Journal of Agricultural and Food Chemistry, 51, 6957–6960.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fenice, M., & Gooday, G. W. (2006). Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Annals of Microbiology, 56(1), 1–6.CrossRefGoogle Scholar
  55. Fenice, M., Selbmann, L., Di Giambattista, R., et al. (1998). Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Research in Microbiology, 149, 289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Figueirêdo, G. S., Figueiredo, L. C., Cavalcanti, F. C. N., Santos, A. C., Costa, A. F., & Oliveira, N. T. (2010). Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology, 53(1), 1–9.CrossRefGoogle Scholar
  57. Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., et al. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6, 978.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fujita, M., Fujita, Y., Noutoshi, Y., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Garo, E., Starks, C. M., Jensen, P. R., et al. (2003). Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. Journal of Natural Products, 66, 423–426.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gaur, R. B., Sharma, R. N., & Singh, V. (2005). Manipulations in the mycoparasite application techniques against Rhizoctonia root rot of cotton. Indian Phytopathology, 58(4), 402–409.Google Scholar
  61. Geremia, R. A., Goldman, G. H., Jacobs, D., et al. (1993). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 8, 603–613.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gill, S. S., Gill, R., Anjum, N. A., et al. (2013). Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress, 7, 73–83.Google Scholar
  63. Gomathinayagam, S., Rekha, M., Murugan, S. S., et al. (2010). The biological control of paddy disease brown spot (Bipolaris oryzae) by using Trichoderma viride in vitro condition. Journal of Biopesticides, 3(1), 93–95.Google Scholar
  64. Gruber, S., & Seidl-Seiboth, V. (2012). Self versus non-self: Fungal cell wall degradation in Trichoderma. Microbiology, 158, 26–34.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gupta, M., Dohroo, N. P., Gangta, V., & Shanmugam, V. (2010). Effect of microbial inoculants on rhizome diseaseand growth parameters of ginger. Indian Phytopathology., 63(4), 438–441.Google Scholar
  66. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Harman, G. E. (2011). Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. The New Phytologist, 189, 647–649.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Harman, G. E., Howell, C. R., Viterbo, A., et al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Henis, Y., Adam, P. B., Lewis, L. A., et al. (1984). Penetration of sclerotia of Sclerotium rolfsii by Trichoderma spp. Phytopathology, 73, 1043–1046.CrossRefGoogle Scholar
  70. Herrera-Estrella, A., & Chet, I. (2003). In D. Arora (Ed.), Handbook of fungal biotechnology. New York:Dekker (in press).Google Scholar
  71. Heydari, A., & Pessarakli, M. A. (2010). Review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273–290.CrossRefGoogle Scholar
  72. Howell, C. R. (1998). In G. E. Harman & C. P. Kubicek (Eds.), The role of antibiosis in biocontrol in Trichoderma and Gliocladium (Vol. 2, pp. 173–183). London: Taylor and Francis Ltd..Google Scholar
  73. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases; the history and evolution of current concepts. Plant Disease, 87, 4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to affect biological control of cotton diseases. Phytopathology, 96, 178–180.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hukma, R., & Pandey, R. N. (2011). Efficacy of biocontrol agents and fungicides in the management of wilt of pigeonpea. Indian Phytopathology, 64(3), 269–271.Google Scholar
  76. Ihrmark, K., Asmail, N., Ubhayasekera, W., et al. (2010). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evolutionary Bioinformatics, 6, 1–26.CrossRefGoogle Scholar
  77. Jadon, K. S. (2009). Eco-friendly management of brinjal collar rot caused by Sclerotium rolfsii Sacc. Indian Phytopathology, 62(3), 345–347.Google Scholar
  78. Jat, J. G., & Agalave, H. R. (2013). Antagonistic properties of Trichoderma species against oilseed-borne fungi. Scientific Research Reporter, 3(2), 171–174.Google Scholar
  79. Jayelakshmi, C., Rettinassababady, N., & Sushma, C. (2013). Integrated management of sesame diseases. Journal of Biopesticides, 6(1), 68–70.Google Scholar
  80. John, R. P., Tyagi, R. D., Prévost, D., et al. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 2, 1452–1459.CrossRefGoogle Scholar
  81. Joshi, B. B., Bhatt, R. P., & Bahukhandi, D. (2010). Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Journal of Environmental Biology, 31(6), 921–928.PubMedPubMedCentralGoogle Scholar
  82. Kapoor, A. S. (2008). Biocontrol potential of Trichoderma spp. against important soilborne diseases of vegetable crops. Indian Phytopathology, 61(4), 492–498.Google Scholar
  83. Karthikeyan, M., Radhika, K., Bhaskaran, R., et al. (2006). Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protection Science, 42, 49–57.CrossRefGoogle Scholar
  84. Khan, M. Y., Haque, M. M., Molla, A. H., et al. (2016). Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. Journal of Integrative Agriculture, 15, 60345–60347.Google Scholar
  85. Khodke, S. W., & Raut, B. T. (2010). Management of root rot/collar rot of soybean. Indian Phytopathology, 63(3), 298–301.Google Scholar
  86. Khosla, C. (2009). Structures and mechanisms of polyketide synthases. The Journal of Organic Chemistry, 74, 6416–6420.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kim, D. J., Baek, J. M., Uribe, P., et al. (2002). Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Current Genetics, 40, 374–384.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kishore, G. K., Pande, S., Rao, J. N., et al. (2001). Biological control of crown rot of groundnut by Trichoderma harzianum and T. viride. International Arachis Newsletter, 21, 39–40.Google Scholar
  89. Kotake, T., Kaneko, S., Kubomoto, A., et al. (2004). Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochemical Journal, 377, 749–755.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kotasthane, A., Agrawal, T., Kushwah, R., et al. (2015). In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141, 523–543.CrossRefGoogle Scholar
  91. Kubicek, C. P., & Penttila, M. E. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium enzymes biological control and commercial applications (Vol. 2, pp. 49–71). London: Taylor and Francis.Google Scholar
  92. Kubicek, C. P., Mach, R. L., Peterbauer, C. K., et al. (2001). Trichoderma: From genes to biocontrol. Journal of Plant Pathology, 83, 11–24.Google Scholar
  93. Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., et al. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12–40.Google Scholar
  94. Kumar, A., Keren, S., Mukherjee, M., et al. (2010). Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochemical and Biophysical Research Communications, 398, 765–770.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kundu, A., & Chatterjee, N. C. (2003). Antagonism of Trichoderma species to Polyporus sanguineus- an incitant of bamboo decay. The Indian Forester, 129(10), 1281–1288.Google Scholar
  96. Latge, J. P. (2007). The cell wall: A carbohydrate armour for the fungal cell. Molecular Microbiology, 66, 279–290.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Li, M., & Yang, Q. (2007). Isolation and characterization of a β-tubulin gene from Trichoderma harzianum. Biochemical Genetics, 45, 529–534.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., & Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding-domain. Applied Microbiology and Biotechnology, 64, 675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lin, Y. R., Lo, C. T., Liu, S. Y., et al. (2012). Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum myco-parasitic coiling. Journal of Agricultural and Food Chemistry, 60, 2123–2128.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Liu, R., Gu, Q. Q., Zhu, W. M., et al. (2005). Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine derived fungus Spicaria elegans. Archives of Pharmacal Research, 28, 1042–1046.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Liu, Y., Yang, Q., & Song, J. (2009). A new serine protease gene from Trichoderma harzianum is expressed in Saccharomyces cerevisiae. Applied Biochemistry and Microbiology, 45(1), 22–26.CrossRefGoogle Scholar
  102. López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123.CrossRefGoogle Scholar
  103. LopezMondejar, R., Ros, M., & Pascual, J. A. (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56, 59–66.CrossRefGoogle Scholar
  104. Lorito, M., Woo, S. L., Harman, G. E., et al. (2010). Translational research on Trichoderma: From ‘omics to the field. Annual Review of Phytopathology, 48, 395–417.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mahdizadehnaraghi, R., Heydari, A., Zamanizadeh, H. R., Rezaee, S., & Nikan, J. (2015). Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. Journal of Plant Protection Research, 55(2), 136–141.CrossRefGoogle Scholar
  106. Marcello, C. M., Steindorff, A. S., Silva, S. P., Silva, R. N., & Bataus, L. A. M. (2010). Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiological Research, 165, 75–81.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Martinez, D., Berka, R. M., Henrissat, B., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553–560.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Marzano, M., Gallo, A., & Altomare, C. (2013). Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. Sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control, 67, 397–408.CrossRefGoogle Scholar
  109. McIntyre, M., Nielsen, J., Arnau, J., et al. (2004) Proceedings of the 7th European conference on fungal genetics. Copenhagen, Denmark.Google Scholar
  110. Mendoza-Mendoza, A., Rosales-Saavedral, T., Cortés, C., et al. (2007). The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology, 153, 2137–2147.PubMedCrossRefGoogle Scholar
  111. Min, Y. S., Kim, B. G., Lee, C., et al. (2002). Purification, characterization, and cDNA cloning of Xylanase from fungus Trichoderma strain SY. Journal of Microbiology and Biotechnology, 12(6), 1–5.Google Scholar
  112. Mishra, R. K., & Gupta, R. P. (2012). In vitro evaluation of plant extracts, bio-agents and fungicides against purple blotch and Stemphylium blight of onion. J Med Plants Res, 6(48), 5840–5843.Google Scholar
  113. Mishra, D. S., Gupta, A. K., Prajapati, C. R., et al. (2011). Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pakistan Journal of Botany, 43(5), 2569–2574.Google Scholar
  114. Montero, M., Sanz, L., Rey, M., et al. (2007). Cloning and characterization of bgn16·3, coding for a β-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. Journal of Applied Microbiology, 103, 1291–1300.PubMedCrossRefGoogle Scholar
  115. Montero-Barrientos, M., Hermosa, R., Cardoza, R. E., et al. (2010). Transgenic expression of the Trichoderma harzianumHSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167, 659–665.PubMedCrossRefPubMedCentralGoogle Scholar
  116. MoranDiez, E., Hermosa, R., Ambrosino, P., Cadoza, R. E., & Gutierrez, S. (2009). The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Am Phytopathol Soc, 22(8), 1021–1031.Google Scholar
  117. Mukherjee, P., Latha, J., Hadar, R., et al. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryotic Cell, 2, 446–455.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mukherjee, P. K., Wiest, A., Ruiz, N., Keightley, A., Moran-Diez, M. E., McCluskey, K., Pouchus, Y. F., & Kenerley, C. M. (2011). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. The Journal of Biological Chemistry, 286, 4544–4554.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52(4), 522–529.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Naeimi, S., Okhovvat, S. M., Javan-Nikkhah, M., Vágvölgyi, C., Khosravi, V., & Kredics, L. (2010). Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathologia Mediterranea, 49, 287–300.Google Scholar
  121. Nath, V. S., John, N. S., Anjanadevi, I. P., et al. (2014). Characterization of Trichoderma spp. antagonistic to Phytophthora colocasiae associated with leaf blight of taro. Annales de Microbiologie, 64(4), 1513–1522.CrossRefGoogle Scholar
  122. Neuhof, T., Dieckmann, R., Druzhinina, I. S., et al. (2007). Intact-Cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma: can molecular phylogenic knowledge predict peptaibol structures? Microbiology, 153(10), 3417–3437.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Nicolás, C., Hermosa, R., Rubio, B., et al. (2014). Trichoderma genes in plants for stress tolerance- status and prospects. Plant Science, 228, 71–78.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Nielsen, K. F., Gräfenhan, T., Zafari, D., et al. (2005). Trichothecene production by Trichoderma brevicompactum. Journal of Agricultural and Food Chemistry, 53, 8190–8196.PubMedCrossRefGoogle Scholar
  125. Omann, M. R., Lehner, S., Escobar Rodriguez, C., Brunner, K., & Zeilinger, S. (2012). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology, 158, 107–118.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Omero, C., Inbar, J., Rocha-Ramírez, V., et al. (1999). G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycological Research, 103, 1637–1642.CrossRefGoogle Scholar
  127. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor.  https://doi.org/10.1094/PHI-A-2006-1117-02. APSnet. p25.
  128. Pan, S., & Das, A. (2011). Control of cowpea (Vigna sinensis) root and collar rot (Rhizoctonia solani) with some organic formulations of Trichoderma harzianum under field condition. The Journal of Plant Protection Science, 3(2), 20–25.Google Scholar
  129. Pandey, S., & Pundhir, V. S. (2013). Mycoparasitism of potato black scurf pathogen (Rhizoctonia solani Kuhn) by biological control agents to sustain production. Indian J Hort, 70(1), 71–75.Google Scholar
  130. Papapostolou, I., & Georgiou, C. D. (2010). Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: A superoxide dismutase mimetics study. Microbiology, 156, 960–966.PubMedCrossRefGoogle Scholar
  131. Patil, H. J., & Solanki, M. K. (2016). Microbial inoculant: Modern era of fertilizers and pesticides. In Microbial inoculants in sustainable agricultural productivity (pp. 319–343). New Delhi: Springer.CrossRefGoogle Scholar
  132. Patron, N. J., Waller, R. F., Cozijnsen, A. J., Straney, D. C., Gardiner, D. M., Nierman, W. C., & Howlett, B. J. (2007). Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evolutionary Biology, 7, 174.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pautasso, M., Döring, T. F., Garbelotto, M., et al. (2012). Impacts of climate change on plant diseases-opinions and trends. European Journal of Plant Pathology, 133, 295–313.CrossRefGoogle Scholar
  134. Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., et al. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.PubMedCrossRefGoogle Scholar
  135. Pinto, R. J., Mapeli, N. C., Cremon, C., & Silva, E. F. (2014). Germinação e crescimento inicial de mangaba (Hancornia speciosa Gomes) em função de preparados homeopáticos Carbo vegetabilis e dias após o despolpamento para semeadura. Revista Agrarian, 7(24), 244–250.Google Scholar
  136. Pozo, M. J., JongMin, B., Garcia, J. M., et al. (2004). Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 41, 336–348.PubMedCrossRefGoogle Scholar
  137. Prakasam, V., & Sharma, P. (2012). Trichoderma harzianum (Th-3) a potential strain to manage the purple blotch of onion (Allium cepa L.) caused by Alternaria porri under north Indian plains. Journal of Agricultural Science, 4(10), 266–272.CrossRefGoogle Scholar
  138. Rabeendran, N., Moot, D. J., Jones, E. E., & Stewart, A. (2000). Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zealand Plant Protection, 53, 143–146.Google Scholar
  139. Raguchander, T., Rajappan, K., & Samiappan, R. (1997). Evaluating methods of application of biocontrol agent in the control of mungbean root rot. Indian Phytopathology, 50(2), 229–234.Google Scholar
  140. Rahman, M. A., Rahman, M. M., Kamruzzaman, M., Begum, M. F., & Alam, M. F. (2012). Use of culture filtrates of Trichoderma strains as a biological control agent against Colletotrichum capsici causing anthracnose fruit rot disease of chili. Journal of Biodiversity and Environmental Sciences, 2(1), 9–18.Google Scholar
  141. Rai, S., Kashyap, P. L., Kumar, S., et al. (2016a). Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus, 5, 1939.  https://doi.org/10.1186/s40064-016-3657-4.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rai, S., Kashyap, P. L., Kumar, S., et al. (2016b). Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World Journal of Microbiology and Biotechnology, 32, 8.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Rakholiya, K. B., & Jadeja, K. B. (2010). Effect of seed treatment of biocontrol agents and chemicals for the management of stem and pod rot of groundnut. International Journal of Plant Protection, 3(2), 276–278.Google Scholar
  144. Rawal, P., Sharma, P., Singh, N. D., et al. (2013). Evaluation of fungicides, neem bio-formulations and biocontrol agent for the management of root rot of safed musli caused by Rhizoctonia solani. Journal of Mycology and Plant Pathology, 43(30), 297.Google Scholar
  145. Ray, A., Kumar, P., & Tripathi, H. S. (2007). Evaluation of bioagents against Rhizoctonia solani Kuhn the cause of aerial blight of soybean. Indian Phytopathology, 60(4), 532–534.Google Scholar
  146. Reino, J. L., Guerrero, R. F., Hernandez-Galan, R., et al. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123.CrossRefGoogle Scholar
  147. Reithner, B., Brunner, K., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R., & Zeilinger, S. (2005). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology, 42(9), 749–760.PubMedCrossRefGoogle Scholar
  148. Reithner, B., Schuhmacher, R., Stoppacher, N., et al. (2007). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genetics and Biology, 44, 1123–1133.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rocha-Ramírez, V., Omero, C., Chet, I., et al. (2002). Trichoderma atroviride G-protein α-subunit gene tag1 is involved in mycoparasitic coiling and conidiation. Eukaryotic Cell, 1, 594–605.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Romao-Dumaresq, A. S., Araújo, W. L., Tabolt, N. J., & Thornton, C. R. (2012). RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One, 7(10), e47888.  https://doi.org/10.1371/journal.pone.0047888. PMID: 23110120.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rotblat, B., Enshell-Seijffers, D., Gershoni, J. M., et al. (2002). Identification of an essential component of the elicitation active site of the EIX protein elicitor. The Plant Journal, 32, 1049–1055.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Rubio, M. B., Hermosa, R., Reino, J. L., et al. (2009). Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genetics and Biology, 46, 17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ruocco, M., Lanzuise, S., Lombardi, N., et al. (2015). Multiple roles and effects of a novel Trichoderma hydrophobin. Molecular Plant-Microbe Interactions, 28, 167–179.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Saadia, M., Ahmed, S., & Jamil, A. (2008). Isolation and cloning of cre1 gene from a filamentous fungus Trichoderma harzianum. Pakistan Journal of Botany, 40(1), 421–426.Google Scholar
  155. Saiprasad, G. V. S., Mythili, J. B., Anand, L., et al. (2009). Development of Trichoderma harzianum gene construct conferring antifungal activity in transgenic tobacco. Indian Journal of Biotechnology, 8, 199–206.Google Scholar
  156. Samuels, G. J. (2006). Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96, 195–206.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sankar, P., & Jeyarajan, R. (1996a). Seed treatment formulation of Trichoderma and Gliocladium for biological control of Macrophomina phaseolina in sesamum. Indian Phytopathology, 49(2), 148–151.Google Scholar
  158. Sankar, P., & Jeyarajan, R. (1996b). Compatibility of antagonists with Azospirillum in Sesamum. Indian Phytopathology., 49(1), 67–71.Google Scholar
  159. Saravanakumar, K., Arasu, V. S., & Kathiresan, K. (2013). Effect of Trichoderma on soil phosphate solubilisation and growth improvement of Avicennia marina. Aquatic Botany, 104, 101–105.CrossRefGoogle Scholar
  160. Saxena, A., Raghuwanshi, R., & Singh, H. B. (2015). Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. Journal of Basic Microbiology, 55, 195–206.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Segarra, G., Van der Ent, S., Trillas, I., & Pieterse, C. M. J. (2009). MYB72 a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology, 1190–1196.  https://doi.org/10.1111/j.1438-8677.2008.00162.x.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Seidl, V., Song, L., Lindquist, E., et al. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Selim, M. E. (2015). Effectiveness of Trichoderma biotic applications in regulating the related defense genes affecting tomato early blight disease. J Plant Pathol Microb, 6(311), 2.Google Scholar
  164. Selvakumar, R. (2008). Bioformulations for management of late light of potato in north eastern India (pp. 3–5). Beijing: Third international late blight conference.Google Scholar
  165. Shahnaz, E., Razdan, V. K., Rizvi, S. E. H., Rather, T. R., Gupta, S., & Andrabi, M. (2013). Integrated disease management of foliar blight disease of onion: A case study of application of confounded factorials. J Agri Sci, 5(1), 17–22.Google Scholar
  166. Sharma, P., Singh, L., & Adlakha, D. (2001). Antagonistic potential of Trichoderma and Aspergillus species on Sclerotinia sclerotiorum (Lib.) de Barry causing rots in cabbage and cauliflower. Pesticides Information, 2, 41–44.Google Scholar
  167. Sharma, P., Sain, S. K., & James, S. (2003). Compatibility study of Trichoderma isolates with fungicides against damping-off of cauliflower and tomato caused by Pythium aphanidermatum. Pesticide Research Journal, 15(2), 133–138.Google Scholar
  168. Sharma, S., Rai, P., Rai, S., Srivastava, M., et al. (2017). Genomic revolution in crop disease diagnosis: A review. In S. S. Singh (Ed.), Plants and microbes in an ever changing environment (pp. 257–293). Hauppauge: Nova Science Publishers.Google Scholar
  169. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Siameto, E. N., Okoth, S., Amugune, N. O., et al. (2011). Molecular characterization and identification of biocontrol isolates of Trichoderma harzianum from Embu district, Kenya. Tropic Subtropic Agroecosys, 13, 81–90.Google Scholar
  171. Siddiquee, S., Cheong, B. E., Taslima, K., et al. (2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science, 50, 358–367.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Singh, O. V., Agarwal, V. K., & Nene, Y. L. (1973). Seed health studies in soybean raised in the Nainital tarai. Indian Phytopathology, 26, 260–267.Google Scholar
  173. Sivasithamparam, K., & Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. In C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium basic biology taxonomy and genetics (Vol. 1, pp. 139–191). London: Taylor and Francis.Google Scholar
  174. Solanki, M. K., Singh, N., Singh, R. K., et al. (2011). Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica, 3, 471–481.CrossRefGoogle Scholar
  175. Solanki, M. K., Robert, A. S., Singh, R. K., et al. (2012a). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65, 330–336.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Solanki, M. K., Kumar, S., Panday, A. K., et al. (2012b). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22, 203–217.Google Scholar
  177. Solanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585–597.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Solanki, M. K., Singh, R. K., Srivastava, S., et al. (2015). Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 82–90.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Solanki, M. K., Malviya, M. K., & Wang, Z. (2016). Actinomycetes bio-inoculants: A modern prospectus for plant disease management. In S. Gopalakrishnan, A. Sathya, & R. Vijayabharathi (Eds.), Plant growth-promoting actinomycetes: A new avenue for enhancing the productivity and soil fertility of grain legumes (pp. 63–81). Singapore: Springer.CrossRefGoogle Scholar
  180. Solanki, M. K., Wang, Z., Wang, F.-Y., et al. (2017). Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech, 19, 136–147.CrossRefGoogle Scholar
  181. Sreedevi, B., CharithaDevi, M., & Saigopal, D. V. R. (2011). Induction of defense enzymes in Trichoderma harzianum treated groundnut plants against Macrophomina phaseolina. Journal of Biological Control, 25(1), 67–73.Google Scholar
  182. Sreedevi, B., CharithaDevi, M., & Saigopal, D. V. R. (2012). Production and optimization of chitinase by Trichoderma harzianum for control of the phytopathogenic fungus M. Phaseolina. Agricultural Science Digest, 32(3), 224–228.Google Scholar
  183. Strieker, M., Tanovic, A., & Marahiel, M. A. (2010). Nonribosomal peptide synthetases: Structures and dynamics. Current Opinion in Structural Biology, 20, 234–240.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Suárez, M. B., Vizcaíno, J. A., Llobell, A., et al. (2007). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Current Genetics, 51, 331–342.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Sundaramoorthy, S., & Balabaskar, P. (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology and Biotechnology, 1(03), 36–40.Google Scholar
  186. Szekeres, A., Kredics, L., Antal, Z., et al. (2004). Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters, 233, 215–222.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Tamimi, K. M., & Hadvan, H. A. (1985). Biological effect of Neurospora sitophlla and Trichoderma harzianum on the growth of a range of Sesamum wilt causing fungi in vitro. Indian Phytopathology, 38(2), 292–296.Google Scholar
  188. Trushina, N., Levin, M., Mukherjee, P. K., & Horwitz, B. A. (2013). PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics, 14(1), 1–21.CrossRefGoogle Scholar
  189. Verma, M., Brara, S. K., Tyagia, R. D., et al. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20.CrossRefGoogle Scholar
  190. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 311–346). Bristol: CAB International.CrossRefGoogle Scholar
  192. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., et al. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.CrossRefGoogle Scholar
  193. Viterbo, A. D. A., & Chet, I. (2006). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Molecular Plant Pathology, 7(4), 249–258.PubMedCrossRefGoogle Scholar
  194. Viterbo, A., Ramot, O., Chemin, L., et al. (2002). Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek, 81, 549–556.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Viterbo, A., Harel, M., Horwitz, B. A., et al. (2005). Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Applied and Environmental Microbiology, 71, 6241–6246.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Viterbo, A. D. A., Wiest, A. R. I. C., Brotman, Y., Chet, I. L. A. N., & Kenerley, C. (2007). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology, 8(6), 737–746.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Viterbo, A., Landau, U., Kim, S., et al. (2010). Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiology Letters, 305, 42–48.PubMedCrossRefGoogle Scholar
  198. Wallner, A., Blatzer, M., Schrettl, M., Sarg, B., Lindner, H., & Haas, H. (2009). Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Applied and Environmental Microbiology, 75, 4194–4196.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wang, Z., Solanki, M. K., Pang, F., et al. (2016). Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech.  https://doi.org/10.1007/s12355-016-0498-y.CrossRefGoogle Scholar
  200. Weindling, R., & Emerson, O. (1936). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 26, 1068–1070.Google Scholar
  201. Wilhite, S. E., & Straney, D. C. (1996). Timing of gliotoxin biosynthesis in the fungal biological control agent Gliocladium virens (Trichoderma virens). Applied Microbiology and Biotechnology, 45, 513–518.Google Scholar
  202. Yadav, M., Rakholiya, K. B., & Pawar, D. M. (2011). Evaluation of bioagents for management of the onion purple blotch and bulb yield loss assessment under field conditions. The Bioscan, 8(4), 1295–1298.Google Scholar
  203. Yandigeri, M. S., Meena, K. K., Singh, D., et al. (2012). Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation, 68, 411–420.CrossRefGoogle Scholar
  204. Yang, H. H., Yang, S. L., Peng, K. C., Lo, C. T., & Liu, S. Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(9), 924–932.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Yasuda, M., Ishikawa, A., Jikumaru, Y., et al. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. The Plant Cell, 20(6), 1678–1692.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Yazdani, M., Chee, K. Y., Faridah, A., et al. (2010). An in vitro study on the adsorption, absorption and uptake Capacity of Zn by the bioremediator Trichoderma atroviride. Environmental Asia, 3, 53–59.Google Scholar
  207. Yobo, K. S., Laing, M. D., Hunter, C. H., & Morris, M. J. (2004). Biological control of Rhizoctonia solani by two Trichoderma species isolated from south African composted soil. South African Journal of Plant and Soil, 21(3), 139–144.CrossRefGoogle Scholar
  208. Zeilinger, S., Reithner, B., Scala, V., et al. (2005). Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Applied and Environmental Microbiology, 71, 1591–1597.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zeilinger, S., Gruber, S., Bansalb, R., et al. (2016). Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biology Reviews, 30, 74–90.CrossRefGoogle Scholar
  210. Zelicourt, A., Colcombet, J., & Hirt, H. (2016). The role of MAPK modules and aba during abiotic stress signaling. Trends in Plant Science, 21, 677–685.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shalini Rai
    • 1
  • Manoj Kumar Solanki
    • 2
    Email author
  • Anjali Chandrol Solanki
    • 3
  • Kanakala Surapathrudu
    • 4
  1. 1.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia
  2. 2.Department of Food Quality & Safety, Institute for Post-harvest and Food SciencesThe Volcani Center, Agricultural Research OrganizationRishon LeZionIsrael
  3. 3.Soil Science and Agriculture ChemistryJawaharlal Nehru Agricultural UniversityJabalpurIndia
  4. 4.Department of Plant Pathology and MicrobiologyIowa State UniversityAmesUSA

Personalised recommendations