Role of Rhizospheric Microbes in the Management of Phytopathogens

  • Mohammad Zuhaib
  • Shabbir Ashraf
  • Nasreen Musheer
  • Mohd Ali


Medicinal plants play very crucial role in the life of people, and they are used in official and various traditional systems of medicines throughout the world, benefitting people to prevent disease, maintain health, and cure ailments. Nearly all modern pharmaceuticals are considered to be natural products or derived from plants. Fungal diseases are the major constraints in the profitable cultivation of medicinal plants. Phytopathogenic problem of medicinal plants not only reduces the yield, but it is also responsible for the deterioration of biochemical and secondary metabolites which are of immense therapeutic value. Imprudent use of insecticides, fungicides, agrochemicals, and fertilizers poses serious threat to environment. Scientists have reported various mechanisms regarding plant rhizospheric microbes, i.e., fungi and bacteria, which colonize the roots of plant and thus help the plants in maintaining its health. In the present scenario, rhizospheric microbes (biocontrol agents) have gained popularity due to their effectiveness, safety, and eco-friendliness, and hence their demand has gradually increased. Rhizospheric microbes not only manage plant diseases but at the same time also boost plant growth by different mechanisms. Many scientists have already reported the beneficial role of rhizospheric microbes on the health of various medicinal plants. Research on medicinal plants and rhizospheric microbes is inadequate as far as biotic stresses are concerned. The mechanisms of plant disease management such as mycoparasitism, antibiosis, induced systemic resistance, plant growth promotion, root colonization, siderophore production, phosphate solubilization, etc., have been studied well in reference to medicinal plants. Still due to the distinct features of medicinal plants, future research could be a major breakthrough in the significant increase in the production of medicinal plants.


Rhizosphere Medicinal plants Biocontrol agents Disease management Plant growth 


  1. Abo-Elyousr, K. A. M., Sobhy, A.-H., & Abdel-Rahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytpathology, 162, 567–574.CrossRefGoogle Scholar
  2. Aidemark, M., Tjellström, H., Sandelius, A. S., Stålbrand, H., Andreasson, E., Rasmusson, A. G., & Widell, S. (2010). Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC Plant Biology, 10(1), 274.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alam, M., Khaliq, A., Shukla, R. S., Sattar, A., Singh, H. N., Samad, A., Gupta, M. L., Pandey, R., Ajayakumar, P. V., Sharma, A., & Khanuja, S. P. S. (2007). Healthy plants for health, a complete treatise on major diseases of medinal and aromatic plants & their management. Lucknow, U.P, (Central Institute of Medicinal and Aromatic Plant) CIMAP, India.Google Scholar
  4. Anitha, R. I., & Murugesan, K. (2005). Production of gliotoxin on natural substrates by Trichoderma virens. Journal of Basic Microbiology, 45(1), 12–19.CrossRefPubMedGoogle Scholar
  5. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.CrossRefGoogle Scholar
  6. Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081–4085.PubMedPubMedCentralGoogle Scholar
  7. Ashraf, S., & Zuhaib, M. (2009). Studies on the development of powdery mildew on Ocimum sanctum (Linn) using growth model. Journal Trends in Biosciences, 2(1), 70–72.Google Scholar
  8. Ashraf, S., & Zuhaib, M. (2013). Fungal biodiversity: A potential tool in plant disease management. InManagement of microbial resources in the environment (pp. 69–90). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Ashraf, S., & Zuhaib, M. (2014a). Fungal biodiversity a potential tool in plant disease management. In A. Malik, M. Alves, & E. Grohmann (Eds.), Management of microbial resources in the environment (pp. 1–530). Dordrecht: Springer.Google Scholar
  10. Ashraf, S., & Zuhaib, M. (2014b). Efficacy of rhizospheric microorganism against wilt of Ashwagandha (Withania somnifera DUNAL) and their influence on its growth. Trends in Biosciences, 7(16), 2165–2167.Google Scholar
  11. Bagnasco, P., De La Fuente, L., Gaultieri, G., Noya, F., & Arias, A. (1998). Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biology and Biochemistry, 30, 1317–1322.CrossRefGoogle Scholar
  12. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307–319.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baker, K. F., & Cook, R. J. (1974). Biological control of plant pathogens. San Francisco: WH Freeman and Co, 433 pp. (Book, reprinted in 1982, Am Phytopathol Soc, St Paul, Minnesota).Google Scholar
  14. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Stepanok, V. V., Tsyganov, V. E., Borisov, A. Y., Kluge, C., Preisfeld, A., Dietz, K. J., & Tikhonovich, I. A. (2001). Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47, 642–652.CrossRefPubMedGoogle Scholar
  15. Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Mecanismos de biocontrol de cepas de Trichoderma. International Microbiology, 7(4), 249–260.PubMedGoogle Scholar
  16. Berger, F., Li, H., White, D., Frazer, R., & Leifert, C. (1996). Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot1 in high-humidity fogging glasshouses. Phytopathology, 86, 428–433.CrossRefGoogle Scholar
  17. Bertrand, H., Nalin, R., Bally, R., & Cleyet-Marel, J. C. (2001). Isolation and identification of the most efficient plant growth promoting bacteria associated with canola (Brassica napus). Biology and Fertility of Soils, 33, 152–156.CrossRefGoogle Scholar
  18. Bharti, N., Barnawal, D., Awasthi, A., Yadav, A., & Kalra, A. (2014). Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum, 36, 45–60.CrossRefGoogle Scholar
  19. Bhatia, S., Maheshwari, D. K., Dubey, R. C., Arora, D. S., Bajpai, V. K., & Kang, S. C. (2008). Beneficial effects of fluorescent Pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L). Journal of Microbiology and Biotechnology, 18, 1578–1583.Google Scholar
  20. Bhattacharya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.CrossRefGoogle Scholar
  21. Bull, C. T., Weller, D. M., & Thomashow, L. S. (1991). Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology, 81(9), 954–959.CrossRefGoogle Scholar
  22. Buyer, J. S., & Leong, J. (1986). Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. Journal of Biological Chemistry, 261(2), 791–794.PubMedGoogle Scholar
  23. Chet, I. (1990). Mycoparasitism – Recognition, physiology and ecology. In R. Baker & P. Dunn (Eds.), New directions in biological control: Alternatives for suppressing agricultural pests and diseases (pp. 725–783). New York: Alan R Liss.Google Scholar
  24. Chet, I., Inbar, J., & Hadar, I. (1997). Fungal antagonists and mycoparasites. The mycota IV: Environmental and microbial relationships (pp. 165–184). Berlin: Springer-Verlag.Google Scholar
  25. Cook, R. J., & Baker, K. F. (1983). The nature and practices of biological control of plant pathogen (p. 539). St. Paul: American Phytopathology Society.Google Scholar
  26. Corke, A. T. K., & Hunter, T. (1979). Biocontrol of Nectria galligena infection of pruning wounds on apple shoots. Journal of Horticultural Science, 54(1), 47–55.CrossRefGoogle Scholar
  27. Dai, C. C., Xie, H., Wang, X. X., Li, P. D., Zhang, T. L., Li, Y. L., & Tan, X. (2009). Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical. China African Journal Biotechnology, 8, 3739–3746.Google Scholar
  28. De La Cruz, J., Rey, M., Lora, J. M., Hidalgo-Gallego, A., Domínguez, F., Pintor-Toro, J. A., et al. (1993). Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Archives of Microbiology, 159(4), 316–322.Google Scholar
  29. De Salamone, I. E. G., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 404–411.CrossRefGoogle Scholar
  30. Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiological Research, 159, 371–394.CrossRefPubMedGoogle Scholar
  31. Dubey, S. C., Suresh, M., & Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Journal of Biological Control, 40, 118–127.CrossRefGoogle Scholar
  32. Elad, Y., & Baker, R. (1985). The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology, 75(9), 1053–1059.CrossRefGoogle Scholar
  33. Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105, 177–189.Google Scholar
  34. Elmer, W. H., Wick, R. L., & Haviland, P. (1994). Vegetative compatibility among Fusarium oxysporum f. sp. basilicum isolates recovered from basil seeds and infected plants. Plant Diseases, 78, 789–791.CrossRefGoogle Scholar
  35. Gao, K., Liu, X., Guo, R., Huai, W., & Zhang, M. (2001). Study on the antagonism of Trichoderma species on canker pathogen fungi of popular. Scientia Silvae Sinicae, 37(5), 82–86.Google Scholar
  36. George, D. R., Edris, W., Hanson, R., & Gilman, F. (2016). Medicinal plants – The next generation. The Lancet, 387(10015), 220–221.CrossRefGoogle Scholar
  37. Glick, B. R. (1995). The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 41, 1376–1381.Google Scholar
  38. Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.CrossRefGoogle Scholar
  39. Goto, S., Nishioka, T., & Kanehisa, M. (1998). LIGAND: Chemical database for enzyme reactions. Bioinformatics, 14, 591–599.CrossRefPubMedGoogle Scholar
  40. Goulard, C., Hlimi, S., Rebuffat, S., & Bodo, B. (1995). Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum, I: Fermentation, isolation and biological properties. Journal of Antibiotics, 48, 1248–1253.CrossRefPubMedGoogle Scholar
  41. Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.CrossRefGoogle Scholar
  42. Haggag, W. M., & Mohamed, H. A. A. (2007). Biotechnological aspects of microorganisms used in plant biological control. American-Eurasian Journal of Sustainable Agriculture, 1, 7–12.Google Scholar
  43. Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8(10), 1855.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194.Google Scholar
  45. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.Google Scholar
  46. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Howell, C. R., & Stipanovic, R. D. (1983). Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology, 29(3), 321–324.CrossRefGoogle Scholar
  48. Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248–252.CrossRefPubMedGoogle Scholar
  49. Howie, W. J., Cook, R. J., & Weller, D. M. (1987). Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology, 77(2), 286–292.CrossRefGoogle Scholar
  50. Irtwange, S. (2006). Application of biological control agents in pre- and post-harvest operations. Agricultural Engineering International 8, Invited Overview 3, A & M University Press, Texas.Google Scholar
  51. Jayalakshmi, S. K., Raju, S., Rani, S. U., Benagi, V. I., & Sreeramulu, K. (2009). Trichoderma harzianum L^ sub 1^ as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L.) against wilt disease caused by Fusarium oxysporum f. sp. ciceri. Australian Journal of Crop Science, 3(1), 44–52.Google Scholar
  52. Jina, S., Liua, L., Liua, Z., Longa, X., Shaoa, H., & Chenc, J. (2013). Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Industrial Crops and Products, 43, 556–561.CrossRefGoogle Scholar
  53. Johri, B. N., Sharma, A., & Virdi, J. S. (2003). Rhizobacterial diversity in India and its influence on soil and plant health. InBiotechnology in India I (pp. 49–89). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  54. Katan, T., Gamliel, A., & Katan, J. (1996). Vegetative compatibility of Fusarium oxysporum from sweet basil in Israel. Plant Pathology, 45(4), 656–661.CrossRefGoogle Scholar
  55. Kaur, R., Macleod, J., Foley, W., & Nayudu, M. (2006). Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry, 67, 595–604.CrossRefPubMedGoogle Scholar
  56. Khamna, S., Yokota, A., & Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25, 649–655.CrossRefGoogle Scholar
  57. Kishore, R. A. J., Tripathi, R. D., Johrf, J. K., et al. (1985). Some new fungal diseases of opium poppy (Papaver somniferum L.). Indian Journal of Plant Pathology, 3, 213–217.Google Scholar
  58. Komatsu, M. (1968). Trichoderma viride as an antagonist of wood inhabiting Hymenomycetes, VIII. The antibiotic activity against the Mycelial growth of Lentinus edodes (Berk) sig, of three genera T. pachybasium, Gliocladium and other sterile forms. Japan: Tottori Mycological Institute.Google Scholar
  59. Kotze, C., Van Niekerk, J. M., Halleen, F., & Fourie, P. H. (2011). Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathologia Mediterranea, 50(Supplement), S247–S263.Google Scholar
  60. Kumar, S., Gupta, P., Sharma, S., & Kumar, D. (2011). A review on immunostimulatory plants. Journal of Chinese Integrative Medicine, 9, 117–128.CrossRefPubMedGoogle Scholar
  61. LaMondia, J. A., & Elmer, W. H. (1989). Pathogenicity and vegetative compatibility of isolates of Fusarium oxysporum and Fusarium moniliforme colonizing Asparagus tissue. Canadian Journal of Botany, 67, 2420–2424.CrossRefGoogle Scholar
  62. Latha, P., Anand, T., Ragupathi, N., Prakasam, V., & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biological Control, 50, 85–93.CrossRefGoogle Scholar
  63. Leng, P., Zhang, Z., Pan, G., & Zhao, M. (2011). Applications and development trends in biopesticides. African Journal of Biotechnology, 10, 19864–19873.Google Scholar
  64. Lin, C., Yang, J., Sun, H., Huang, X., Wang, R., & Zhang, K. Q. (2007). Purification and characterization of a β-1, 3-glucanase from the novel mycoparasite Periconia byssoides. Biotechnology Letters, 29, 617–622.CrossRefPubMedGoogle Scholar
  65. Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.CrossRefGoogle Scholar
  66. Lucy, M., Reed, E., & Glick, B. R. (2004). Application of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek, 86, 1–25.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mansoor, F., Sultana, V., & Ehteshamul-Haque, S. (2007). Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis. Pakistan Journal of Botany, 39(6), 2113–2119.Google Scholar
  68. Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., & Pierson, L. S. (1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology, 58(8), 2616–2624.PubMedPubMedCentralGoogle Scholar
  69. McAlees, A. J., & Taylor, A. (1995). The biodegradation of L-tyrosine by Trichoderma hamatum to trichoviridin and related compounds. Proceedings of the Nova Scotian Institute of Science, 40(2), 61–65.Google Scholar
  70. Mukerji, K. G. (2000). Exploitation of protoplast fusion technology in improving biocontrol potential. InBiocontrol potential and its exploitation in Sustainable agriculture (pp. 39–48). Boston: Springer.Google Scholar
  71. Mustafa, A., Aslam, M., Khan, M., Inam-ul-Haq, M., Pervez, A., & Ummad-ud-DinUmar. (2009). Usefulness of different culture media for in-vitro evaluation of Trichoderma sp. against seed-borne fungi of economic importance. Pakistan Journal of Phytopatholology, 21(1), 83–88.Google Scholar
  72. Papavizas, G. C. (1985). Trichoderma and Gliocladium their biology, ecology and potential of biocontrol. Annual Review of Phytopathology, 23, 23–54.CrossRefGoogle Scholar
  73. Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indole-acetic acid in development of host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Phuwapraisirisan, P., Rangsan, J., Siripong, P., & Tin-Pyang, S. (2006). 9-epiViridiol, a novel cytotoxic furanosteroid from soil fungus Trichoderma virens. Natural Product Research, 20(14), 1321–1325.CrossRefPubMedGoogle Scholar
  75. Pukall, C. R., Schumann, P., Hormazabal, V., & Granum, P. (2005). Toxin producing ability among Bacillus spp. outside Bacillus cereus group. Applied and Environmental Microbiology, 71, 1178–1183.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Raaijmakers, J. M., van der Sluis, I., Koster, M., Bakker, P. A. H. M., Weisbeek, P. J., & Schippers, B. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology, 41, 126–135.CrossRefGoogle Scholar
  77. Rachid, D., & Ahmed, B. (2005). Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 4, 697–702.CrossRefGoogle Scholar
  78. Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 897–906.Google Scholar
  79. Sattar, A., Samad, A., Alam, M., et al. (1995). Screening of opium poppy (Papaver somniferum) germplasm for disease resistance. Current Research on Medicinal and Aromatic Plants, 17, 315–320.Google Scholar
  80. Scher, F. M., & Baker, R. (1982). Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogen. Phytopathology, 72, 1567–1573.CrossRefGoogle Scholar
  81. Schirmbock, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arsian-Atac, I., Scala, F., Harman, G. E., & Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60, 4364–4370.PubMedPubMedCentralGoogle Scholar
  82. Schoonbeek, H., Raaijmakers, J. M., & De Waard, M. A. (2002). Fungal ABC transporters and microbial interactions in natural environments. Molecular Plant-Microbe Interactions, 15, 1165–1172.CrossRefPubMedGoogle Scholar
  83. Selvanathan, S., Indrakumar, I., & Johnpaul, M. (2011). Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L). Recent Research in Science and Technology, 3, 94–100.Google Scholar
  84. Sen, S., Biswas, G., Basu, S. K., & Acharya, K. (2012). Management of leaf spot disease of Stevia rebaudiana Bertoni with antagonistic bacteria. Australian Journal of Crop Science, 6, 350–356.Google Scholar
  85. Shahzad, S. M., Ashraf, M., Arif, M. S., Riaz, M., Yasmeen, T., Abid, M., Ghazanfar, M. U., & Zahid, M. A. (2015). Plant-Growth-Promoting Rhizobacteria (PGPR) and medicinal plants (Soil Biology 42, Ed. D. Egamberdieva, et al.). Cham: Springer.
  86. Sharma, P., & Trivedi, P. C. (2010). Evaluation of different fungal antagonists against Fusarium oxysporum infecting Withania somnifera (L) Dunal. Biology and Environmental Sciences, 6, 37–41.Google Scholar
  87. Sharma, I., Kumari, N., & Sharma, V. (2013). Defense gene expression in Sorghum defense gene expression in Sorghum bicolor against Macrophomina phaseolina in leaves and roots of susceptible and resistant cultivars. Journal of Plant Interactions, 9(1), 315–323.CrossRefGoogle Scholar
  88. Shrivastava, S., Egamberdieva, D., & Varma, A. (2015). Plant growth-promoting rhizobacteria (PGPR) and medicinal plants: The state of the art. InPlant-growth-promoting Rhizobacteria (PGPR) and medicinal plants (pp. 1–16). Cham: Springer.Google Scholar
  89. Shukla, R. S., Abdul-Khaliq, Singh H. N., & Alam, M. (2008). Phytotoxin production by Alternaria alternata and its role in black leaf spot disease of Aloe vera. In 4th National Interactive Meet Souvenir (NIM-08). CIMAP (CSIR), Lucknow.Google Scholar
  90. Siddiqui, Z. A. (2006). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 111–142). Dordrecht: Springer.CrossRefGoogle Scholar
  91. Sivan, A., & Chet, T. (1989). Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology, 74, 498–498.CrossRefGoogle Scholar
  92. Song, M., Yun, H. Y., & Kim, Y. H. (2014). Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. Journal of Ginseng Research, 38, 136–145.CrossRefPubMedGoogle Scholar
  93. Sriram, S., Manasa, S. B., & Savitha, M. J. (2009). Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. Journal of Biological Control, 23, 449–456.Google Scholar
  94. Strashnov, Y., Elad, Y., Sivan, A., Rerdick, Y., & Chet, I. (1985). Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai. Crop Protection, 4, 359–336.CrossRefGoogle Scholar
  95. Suzuki, S., He, Y., & Oyaizu, H. (2003). Indole-3-Acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Current Microbiology, 47(2), 138–143.CrossRefPubMedGoogle Scholar
  96. Thomashow, S. L., & Weller, M. D. (1990). Role of antibiotics and siderophore in biocontrol of take-all disease of wheat. Plant and Soil, 129, 95–99.CrossRefGoogle Scholar
  97. Toyota, K., & Ikeda, K. (1997). Relative importance of motility and antibiosis in the rhizoplane competence of a biocontrol agent Pseudomonas fluorescens MelRC2Rif. Biology and Fertility of Soils, 25(4), 416–420.CrossRefGoogle Scholar
  98. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma – Plant pathogens interactions. Soil Biology and Biochemistry, 40, 1–10.CrossRefGoogle Scholar
  99. Vinale, F., Sivasithamparam, K., Emilio, L., Wool, L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8(Suppl-1, M5), 127–139.CrossRefGoogle Scholar
  100. Viterbo, A., Inbar, J., Hadar, Y., & Chet, I. (2007). Plant disease biocontrol and induced resistance via fungal mycoparasites. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships (The Mycota IV) (2nd ed., pp. 127–146). Berlin/Heidelberg: Springer.Google Scholar
  101. Wang, C., Knill, E., Glick, B. R., & Defago, G. (2000). Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities. Canadian Journal of Microbiology, 46, 898–907.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Weindling, R. (1932). Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22, 837–845.Google Scholar
  103. Weller, D. M. (1988). Biological control of soilborne plant pathogens in the Rhizosphere with bacteria. Annual Review of Phytopathology, 26(1), 379–407.CrossRefGoogle Scholar
  104. Wells, D. H. (1988). Trichoderma as a biocontrol agent. In K. G. Mukerji & K. L. Garg (Eds.), Biocontrol and plant diseases (p. 73). Boca Raton: CRC Press.Google Scholar
  105. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.CrossRefPubMedGoogle Scholar
  106. Whistler, C. A., Stockwell, V. O., & Loper, J. E. (2000). Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 66, 2718–2725.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Woo, S. L., & Lorito, M. (2007). Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. InNovel biotechnologies for biocontrol agent enhancement and management (pp. 107–130). Dordrecht: Springer.CrossRefGoogle Scholar
  108. Young, F. E., Tupper, J., & Strominger, J. L. (1974). Autolysis of cell walls of Bacillus subtilis mechanism and possible relationship to competence. The Journal of Biological Chemistry, 249, 3600–3602.Google Scholar
  109. Zafari, D., Koushki, M. M., & Bazgir, E. (2008). Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. African Journal of Biotechnology, 7(20), 3653–3659.Google Scholar
  110. Zhang, J., Howell, C. R., & Starr, J. L. (1996). Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Science and Technology, 6(2), 175–188.CrossRefGoogle Scholar
  111. Zheng, L., Liu, J., Liu, T., Zhu, Z., Jiang, D., & Huang, J. (2012). Fusarium wilt of Coleus forskohlii caused by Fusarium oxysporum in China. Canadian Journal of Plant Pathology, 34, 310–314.CrossRefGoogle Scholar
  112. Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86(11), 1255–1260.CrossRefGoogle Scholar
  113. Zuhaib, M., Ashraf, S., & Ali, M. (2016). Screening of Withania somnifera L. Germplasm for resistance against leaf spot caused by Alternaria alternata (Fr.) Keissler. Journal of Functional And Environmental Botany, 6(1), 54–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohammad Zuhaib
    • 1
  • Shabbir Ashraf
    • 1
  • Nasreen Musheer
    • 1
  • Mohd Ali
    • 2
  1. 1.Department of Plant Protection, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Plant PathologySardar Vallabh Bhai Patel University of Agriculture and TechnologyMeerutIndia

Personalised recommendations