Advertisement

Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods

  • Yohei Sasagawa
  • Tetsutaro Hayashi
  • Itoshi NikaidoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1129)

Abstract

This review describes the features of molecular biology techniques for single-cell RNA sequencing (scRNA-seq), including methods developed in our laboratory. Existing scRNA-seq methods require the conversion of first-strand cDNA to amplifiable cDNA followed by whole-transcript amplification. There are three primary strategies for this conversion: poly-A tagging, template switching, and RNase H-DNA polymerase I-mediated second-strand cDNA synthesis for in vitro transcription. We discuss the merits and limitations of these strategies and describe our Reverse Transcription with Random Displacement Amplification technology that allows for direct first-strand cDNA amplification from RNA without the need for conversion to an amplifiable cDNA. We believe that this review provides all users of single-cell transcriptome technologies with an understanding of the relationship between the quantitative performance of various methods and their molecular features.

References

  1. Archer N, Walsh MD, Shahrezaei V, Hebenstreit D. Modeling enzyme processivity reveals that RNA-seq libraries are biased in characteristic and correctable ways. Cell Syst. 2016;3:467–479.e12.CrossRefGoogle Scholar
  2. Armour CD, Castle JC, Chen R, Babak T, Loerch P, Jackson S, et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods. 2009;6:647–9.CrossRefGoogle Scholar
  3. Avital G, Avraham R, Fan A, Hashimshony T, Hung DT, Yanai I. scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol. 2017;18:19.CrossRefGoogle Scholar
  4. Belyavsky A, Vinogradova T, Rajewsky K. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells. Nucleic Acids Res. 1989;17:2919–32.CrossRefGoogle Scholar
  5. Bose S, Wan Z, Carr A, Rizvi A, Vieira G, Pe’er D, et al. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol. 2015;16:120.CrossRefGoogle Scholar
  6. Brady G, Barbara M, Iscove NN. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol Cell Biol. 1990;2:17–25.. [referencex]Google Scholar
  7. Brady G, Billia F, Knox J, Hoang T, Kirsch IR, Voura EB, et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr Biol. 1995;5:909–22.CrossRefGoogle Scholar
  8. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99:5261–6.CrossRefGoogle Scholar
  9. Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 1995;83:195–206.CrossRefGoogle Scholar
  10. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A. 1992;89:3010–4.CrossRefGoogle Scholar
  11. Eberwine J, Kacharmina JE, Andrews C, Miyashiro K, McIntosh T, Becker K, et al. mRNA expression analysis of tissue sections and single cells. J Neurosci. 2001;21:8310–4.CrossRefGoogle Scholar
  12. Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:236.CrossRefGoogle Scholar
  13. Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988;85:8998–9002.CrossRefGoogle Scholar
  14. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14:395–8.CrossRefGoogle Scholar
  15. Gubler U, Hoffman BJ. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–9.CrossRefGoogle Scholar
  16. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the mouse cell atlas by microwell-seq. Cell. 2018;173:1307.CrossRefGoogle Scholar
  17. Hashimoto S, Tabuchi Y, Yurino H, Hirohashi Y, Deshimaru S, Asano T, et al. Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues. Sci Rep. 2017;7:439.CrossRefGoogle Scholar
  18. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2012;2:666–73.CrossRefGoogle Scholar
  19. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 2016;17:892.CrossRefGoogle Scholar
  20. Hayashi T, Sasagawa Y, Nikaido I. RIKEN. Method for nucleic acid amplification. In: Patent WO2016052619A1; 2016.Google Scholar
  21. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018;9:1435.CrossRefGoogle Scholar
  22. Herman JS, Sagar, Grün D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat Methods. 2018;15:379–86.CrossRefGoogle Scholar
  23. Hochgerner H, Lönnerberg P, Hodge R, Mikes J, Heskol A, Hubschle H, et al. STRT-seq-2i: dual-index 5′ single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep. 2017;7:566.CrossRefGoogle Scholar
  24. Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol. 2002;20:940–3.CrossRefGoogle Scholar
  25. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160–7.CrossRefGoogle Scholar
  26. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2013;11:163–6.CrossRefGoogle Scholar
  27. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776–9.CrossRefGoogle Scholar
  28. Kamme F, Salunga R, Yu J, Tran D-T, Zhu J, Luo L, et al. Single-cell microarray analysis in Hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci. 2003;23:3607–15.CrossRefGoogle Scholar
  29. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201.CrossRefGoogle Scholar
  30. Kurimoto K. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006;34:e42.CrossRefGoogle Scholar
  31. Land H, Grez M, Hauser H, Lindenmaier W, Schütz G. 5′-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency. Nucleic Acids Res. 1981;9:2251–66.CrossRefGoogle Scholar
  32. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19:225–32.CrossRefGoogle Scholar
  33. Loh E, Elliott J, Cwirla S, Lanier L, Davis M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science. 1989;243:217–20.CrossRefGoogle Scholar
  34. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.CrossRefGoogle Scholar
  35. Matsunaga H, Goto M, Arikawa K, Shirai M, Tsunoda H, Huang H, et al. A highly sensitive and accurate gene expression analysis by sequencing (“bead-seq”) for a single cell. Anal Biochem. 2015;471:9–16.CrossRefGoogle Scholar
  36. Matz M. Amplification of cDNA ends based on template-switching effect and step- out PCR. Nucleic Acids Res. 1999;27:1558–60.CrossRefGoogle Scholar
  37. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3:385–394.e3.CrossRefGoogle Scholar
  38. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43:e60.CrossRefGoogle Scholar
  39. Ohara O, Dorit RL, Gilbert W. One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci U S A. 1989;86:5673–7.CrossRefGoogle Scholar
  40. Okayama H, Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982;2:161–70.CrossRefGoogle Scholar
  41. Ozsolak F, Goren A, Gymrek M, Guttman M, Regev A, Bernstein BE, et al. Digital transcriptome profiling from attomole-level RNA samples. Genome Res. 2010;20:519–25.CrossRefGoogle Scholar
  42. Petalidis L. Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. Nucleic Acids Res. 2003;31:142e–142.CrossRefGoogle Scholar
  43. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8.CrossRefGoogle Scholar
  44. Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777–82.CrossRefGoogle Scholar
  45. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The human cell atlas. eLife. 2017;6:503.CrossRefGoogle Scholar
  46. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360:176–82.CrossRefGoogle Scholar
  47. Roychoudhury R, Jay E, Wu R. Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acids Res. 1976;3:863–78.CrossRefGoogle Scholar
  48. Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013;14:R31.CrossRefGoogle Scholar
  49. Sasagawa Y, Danno H, Takada H, Ebisawa M, Tanaka K, Hayashi T, et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 2018;19:14049.CrossRefGoogle Scholar
  50. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods. 2017;14:267–70.CrossRefGoogle Scholar
  51. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-seq; 2014.  https://doi.org/10.1101/003236.CrossRefGoogle Scholar
  52. Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111:7048–53.CrossRefGoogle Scholar
  53. Subkhankulova T, Livesey F. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level. Genome Biol. 2006;7:R18.CrossRefGoogle Scholar
  54. Takahashi H, Satoh T, Kanahara H, Kubota Y, Hirose T, Yamazaki H, et al. Development of a bench-top extra-cleanroom for DNA amplification. BioTechniques. 2016;61:42–6.CrossRefGoogle Scholar
  55. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82.CrossRefGoogle Scholar
  56. Tang DTP, Plessy C, Salimullah M, Suzuki AM, Calligaris R, Gustincich S, et al. Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res. 2012;41:e44.CrossRefGoogle Scholar
  57. Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. Single-cell transcriptional analysis of neuronal progenitors. Neuron. 2003;38:161–75.CrossRefGoogle Scholar
  58. Van Gelder RN, Zastrow von ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990;87:1663–7.CrossRefGoogle Scholar
  59. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.CrossRefGoogle Scholar
  60. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2013;11:41–6.CrossRefGoogle Scholar
  61. Yang L, Ma Z, Cao C, Zhang Y, Wu X, Lee R, et al. MR-seq: measuring a single cell’s transcriptome repeatedly by RNA-seq. Sci Bull. 2017;62:391–8.CrossRefGoogle Scholar
  62. Zajac P, Islam S, Hochgerner H, Lönnerberg P, Linnarsson S. Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. Menéndez-Arias L, editor. PLoS One. 2013;8:e85270.CrossRefGoogle Scholar
  63. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yohei Sasagawa
    • 1
  • Tetsutaro Hayashi
    • 1
  • Itoshi Nikaido
    • 1
    Email author
  1. 1.Laboratory for Bioinformatics ResearchRIKEN Center for Biosystems Dynamics ResearchWakoJapan

Personalised recommendations