Adaptive Guaranteed Performance Control of Wind Energy Systems

  • Wenchao Meng
  • Qinmin YangEmail author
Part of the Power Systems book series (POWSYS)


In this chapter, we present an adaptive guaranteed performance controller for wind energy conversion system (WECS) equipped with doubly fed induction generator (DFIG). The proposed controller consists of outer loop control concerning the aeroturbine mechanical subsystem, and inner loop control concerning the electrical subsystem. As opposed to most existing studies, we are capable of quantifying and further guaranteeing the system performance on both transient and steady state stages with the help of error transformation techniques. The stability is guaranteed via standard Lyapunov synthesis. Finally, the effectiveness of the proposed scheme is validated on a 1.5 MW DFIG-based wind turbine using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator developed by the National Renewable Energy Laboratory (NREL).


  1. 1.
    Bose B (2010) Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4(1):6–17CrossRefGoogle Scholar
  2. 2.
    Kaldellis JK (2008) The wind potential impact on the maximum wind energy penetration in autonomous electrical grids. Renew Energy 33(7):1665–1677CrossRefGoogle Scholar
  3. 3.
    Joselin Herbert GM, Iniyan S, Sreevalsan E, Rajapandian S (2007) A review of wind energy technologies. Renew Sustain Energy Rev 11(6):1117–1145CrossRefGoogle Scholar
  4. 4.
    Todeschini G, Emanuel AE (2011) Transient response of a wind energy conversion system used as active filter. IEEE Trans Energy Convers 26(2):522–531CrossRefGoogle Scholar
  5. 5.
    Munteanu I, Cutululis NA, Bratcu AI, Ceanga E (2005) Optimization of variable speed wind power systems based on a LQG approach. Control Eng Pract 13(7):903–912CrossRefGoogle Scholar
  6. 6.
    Bououden S, Chadli M, Filali S, Hajjaji AE (2012) Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach. Renew Energy 37(1):434–439CrossRefGoogle Scholar
  7. 7.
    Boukhezzar B, Siguerdidjane H (2009) Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers Manag 50(4):885–892CrossRefGoogle Scholar
  8. 8.
    Benbouzid M, Beltran B, Amirat Y, Yao G, Han J, Mangel H (2014) Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Trans 53(3):827–833CrossRefGoogle Scholar
  9. 9.
    Meng W, Yang Q, Ying Y, Sun Y, Yang Z, Sun Y (2013) Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans Energy Convers 28(3):716–725CrossRefGoogle Scholar
  10. 10.
    Meng W, Yang Q, Sun Y (2016) Guaranteed performance control of DFIG variable-speed wind turbines. IEEE Trans Control Syst Technol 24(6):2215–2223CrossRefGoogle Scholar
  11. 11.
    Beltran B, Ahmed-Ali T, Benbouzid M (2009) High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 56(9):3314–3321CrossRefGoogle Scholar
  12. 12.
    Evangelista C, Valenciaga F, Puleston P (2013) Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Trans Energy Convers 28(3):682–689CrossRefGoogle Scholar
  13. 13.
    Valenciaga F, Puleston PF, Spurgeon SK (2009) A geometric approach for the design of MIMO sliding controllers. Application to a wind-driven doubly fed induction generator. Int J Robust Nonlinear Control 19(1):22–39MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boukhezzar B, Lupu L, Siguerdidjane H, Hand M (2007) Multivariable control strategy for variable speed, variable pitch wind turbines. Renew Energy 32(8):1273–1287CrossRefGoogle Scholar
  15. 15.
    Kumar A, Stol K (2010) Simulating feedback linearization control of wind turbines using high-order models. Wind Energy 13(5):419–432CrossRefGoogle Scholar
  16. 16.
    Beltran B, El Hachemi Benbouzid M, Ahmed-Ali T (2012) Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Trans Energy Convers 27(2):261–269CrossRefGoogle Scholar
  17. 17.
    Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans Autom Control 53(9):2090–2099MathSciNetCrossRefGoogle Scholar
  18. 18.
    Slotine JJE, Li W et al (1991) Applied nonlinear control. Prentice-Hall Englewood Cliffs, NJzbMATHGoogle Scholar
  19. 19.
    Chen M, Ge SS, Ren B (2011) Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3):452–465MathSciNetCrossRefGoogle Scholar
  20. 20.
    Narendra K, Annaswamy A (1987) A new adaptive law for robust adaptation without persistent excitation. IEEE Trans Autom Control 32(2):134–145MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang Q, Jagannathan S (2012) Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Trans Syst Man Cybern Part B Cybern 42(2):377–390Google Scholar
  22. 22.
    Bechlioulis CP, Rovithakis GA (2014) A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4):1217–1226MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lewis FL, Jagannathan S, Yesildirak A (1999) Neural network control of robot manipulators and non-linear systems. Taylor & Francis, Philadelphia, PAGoogle Scholar
  24. 24.
    National Renewable Energy Laboratory, Golden, CO. (2007, Feb).
  25. 25.
    Beltran B, Ahmed-Ali T, El Hachemi Benbouzid M (2008) Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans Energy Convers 23(2):551–558CrossRefGoogle Scholar
  26. 26.
    Buhl Jr ML, Manjock A (2006) A comparison of wind turbine aeroelastic codes used for certification. Natl Renew Energy Lab, Golden, CO, NREL/CP-500-39113Google Scholar
  27. 27.
    Jonkman BJ, Buhl Jr ML, Turbsim user’s guide. Technical Report NREL/TP-500-41136. National Renewable Energy Laboratory (NREL), Golden, CO.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Control Science and EngineeringZhejiang UniversityZhejiangPeople’s Republic of China

Personalised recommendations