Advertisement

An Indirect Adaptive Control Paradigm for Wind Generation Systems

  • Tariq KamalEmail author
  • Murat Karabacak
  • Syed Zulqadar Hassan
  • Luis M. Fernández Ramírez
  • Indrek Roasto
  • Laiq Khan
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Globally, there has been a significant evolution in the development of wind energy. Nevertheless, the major difference between the highly stochastic nature of wind speed and the desired demands regarding the electrical energy quality and system stability is the main concern in wind energy system. Hence, wind energy generation according to the standard parameters imposed by the power industry is unachievable without the essential involvement of advanced control technique. In this book chapter, a novel indirect adaptive control for wind energy systems is proposed considering real load demand and weather parameters. The performance of existing neuro-fuzzy scheme is improved further using a Hermite wavelet in the proposed architecture. The parameters of the controller are trained adaptively online via backpropagation algorithm. The proposed control law adopts the free direct control model which shorten the weight of the lengthy pre-learning, and memory requirements for real time application. Various computer simulation results and performance comparison indexes are given to show that the proposed control law is better in terms of efficiency, output power and steady-state performance over the existing state-of-the-art.

Notes

Acknowledgements

The authors gratefully thank to Tallinn University of Technology and Archimedes Foundation for providing Dora Plus grant in the frame of the European Regional Development Funds Doctoral Studies and Internationalisation Programme.

References

  1. 1.
    Bradai R, Boukenoui R, Kheldoun A et al (2017) Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions. Appl Energy 199:416–429.  https://doi.org/10.1016/J.APENERGY.2017.05.045CrossRefGoogle Scholar
  2. 2.
    Osório GJ, Matias JCO, Catalão JPS (2015) Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75:301–307.  https://doi.org/10.1016/J.RENENE.2014.09.058CrossRefGoogle Scholar
  3. 3.
    Amjady N, Keynia F, Zareipour H (2011) Short-term wind power forecasting using ridgelet neural network. Electr Power Syst Res 81:2099–2107.  https://doi.org/10.1016/J.EPSR.2011.08.007CrossRefGoogle Scholar
  4. 4.
    Khalid M, Savkin AV (2012) A method for short-term wind power prediction with multiple observation points. IEEE Trans Power Syst 27:579–586.  https://doi.org/10.1109/TPWRS.2011.2160295CrossRefGoogle Scholar
  5. 5.
    Xia S, Zhang Q, Hussain ST et al (2018) Impacts of integration of wind farms on power system transient stability. Appl Sci 8.  https://doi.org/10.3390/app8081289CrossRefGoogle Scholar
  6. 6.
    Petković D, Ćojbas̆ić Z̆, Nikolić V et al (2014) Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64:868–874.  https://doi.org/10.1016/J.ENERGY.2013.10.094CrossRefGoogle Scholar
  7. 7.
    Tan K, Islam S (2004) Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans Energy Convers 19:392–399.  https://doi.org/10.1109/TEC.2004.827038CrossRefGoogle Scholar
  8. 8.
    Boukhezzar B, Siguerdidjane H (2009) Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers Manag 50:885–892.  https://doi.org/10.1016/J.ENCONMAN.2009.01.011CrossRefGoogle Scholar
  9. 9.
    Lin C-H, (2014) Recurrent wavelet neural network control of a PMSG system based on a PMSM wind turbine emulator. TURKISH J Electr Eng Comput Sci 22:795–824.  https://doi.org/10.3906/elk-1208-3CrossRefGoogle Scholar
  10. 10.
    Yin M, Li W, Chung CY et al (2017) Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions. IET Renew Power Gener 11:501–510.  https://doi.org/10.1049/iet-rpg.2016.0635CrossRefGoogle Scholar
  11. 11.
    Taveiros FEV, Barros LS, Costa FB (2015) Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines. Energy 89:896–906.  https://doi.org/10.1016/J.ENERGY.2015.06.027CrossRefGoogle Scholar
  12. 12.
    Eriksson S, Kjellin J, Bernhoff H (2013) Tip speed ratio control of a 200 kW VAWT with synchronous generator and variable DC voltage. Energy Sci Eng 1:135–143.  https://doi.org/10.1002/ese3.23CrossRefGoogle Scholar
  13. 13.
    Zhong Q-H, Ruan Y, Zhao M-H, Tan L (2013) Application of variable-step hill climbing searching in maximum power point tracking for DFIG wind power generation system. Power Syst Prot Control 41:67–73Google Scholar
  14. 14.
    Lalouni S, Rekioua D, Idjdarene K, Tounzi A (2015) Maximum power point tracking based hybrid hill-climb search method applied to wind energy conversion system. Electr Power Components Syst 43:1028–1038.  https://doi.org/10.1080/15325008.2014.999143CrossRefGoogle Scholar
  15. 15.
    Harrag A, Messalti S (2015) Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew Sustain Energy Rev 49:1247–1260.  https://doi.org/10.1016/J.RSER.2015.05.003CrossRefGoogle Scholar
  16. 16.
    Jiang L (2015) An improved hybrid hill climb searching control for MPPT of wind power generation systems under fast varying wind speed. IET Conf Proc 1–6.  https://doi.org/10.1049/cp.2015.0493
  17. 17.
    Rezaei MM (2018) A nonlinear maximum power point tracking technique for DFIG-based wind energy conversion systems. Eng Sci Technol an Int J 21:901–908.  https://doi.org/10.1016/J.JESTCH.2018.07.005CrossRefGoogle Scholar
  18. 18.
    Li B, Tang W, Xiahou K, Wu Q (2017) Development of novel robust regulator for maximum wind energy extraction based upon perturbation and observation. Energies 10.  https://doi.org/10.3390/en10040569
  19. 19.
    Kazmi SMR, Goto H, Guo H, Ichinokura O (2011) A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Trans Ind Electron 58:29–36.  https://doi.org/10.1109/TIE.2010.2044732CrossRefGoogle Scholar
  20. 20.
    Huang C, Li F, Jin Z (2015) Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Trans Ind Electron 62:2530–2539.  https://doi.org/10.1109/TIE.2015.2395384CrossRefGoogle Scholar
  21. 21.
    Tang C, Soong WL, Freere P et al (2012) Dynamic wind turbine output power reduction under varying wind speed conditions due to inertia. Wind Energy 16:561–573.  https://doi.org/10.1002/we.1507CrossRefGoogle Scholar
  22. 22.
    Kim K, Van TL, Lee D et al (2013) Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE Trans Ind Electron 60:3207–3217.  https://doi.org/10.1109/TIE.2012.2200210CrossRefGoogle Scholar
  23. 23.
    Zhang X, Huang C, Hao S et al (2016) An improved adaptive-torque-gain MPPT control for direct-driven PMSG wind turbines considering wind farm turbulences. Energies 9.  https://doi.org/10.3390/en9110977CrossRefGoogle Scholar
  24. 24.
    Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst Mag 26:70–81.  https://doi.org/10.1109/MCS.2006.1636311MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xia Y, Ahmed KH, Williams BW (2011) A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system. IEEE Trans Power Electron 26:3609–3620.  https://doi.org/10.1109/TPEL.2011.2162251CrossRefGoogle Scholar
  26. 26.
    Xia Y, Ahmed KH, Williams BW (2013) Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Trans Ind Electron 60:1122–1132.  https://doi.org/10.1109/TIE.2012.2206332CrossRefGoogle Scholar
  27. 27.
    Satpathy AS, Kishore NK, Kastha D, Sahoo NC (2014) Control scheme for a stand-alone wind energy conversion system. IEEE Trans Energy Convers 29:418–425.  https://doi.org/10.1109/TEC.2014.2303203CrossRefGoogle Scholar
  28. 28.
    Zhao H, Wu Q, Rasmussen CN, Blanke M (2014) \(L_1\) adaptive speed control of a small wind energy conversion system for maximum power point tracking. IEEE Trans Energy Convers 29:576–584.  https://doi.org/10.1109/TEC.2014.2312978CrossRefGoogle Scholar
  29. 29.
    Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron 53:486–494.  https://doi.org/10.1109/TIE.2006.870658CrossRefGoogle Scholar
  30. 30.
    Heo SY, Kim MK, Choi JW (2015) Hybrid intelligent control method to improve the frequency support capability of wind energy conversion systems. Energies 8:11430–11451.  https://doi.org/10.3390/en81011430CrossRefGoogle Scholar
  31. 31.
    Martinez MI, Susperregui A, Tapia G (2017) Second-order sliding-mode-based global control scheme for wind turbine-driven DFIGs subject to unbalanced and distorted grid voltage. IET Electr Power Appl 11:1013–1022.  https://doi.org/10.1049/iet-epa.2016.0711CrossRefGoogle Scholar
  32. 32.
    Martinez MI, Susperregui A, Tapia G, Xu L (2013) Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew Power Gener 7:370–379.  https://doi.org/10.1049/iet-rpg.2012.0172CrossRefGoogle Scholar
  33. 33.
    Belmokhtar K, Doumbia ML, Agbossou K (2014) Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy 76:679–693.  https://doi.org/10.1016/j.energy.2014.08.066CrossRefGoogle Scholar
  34. 34.
    Hassan SZ, Li H, Kamal T et al (2017) An intelligent pitch angle control of wind turbine. In: 2017 international symposium on recent advances in electrical engineering (RAEE).  https://doi.org/10.1109/RAEE.2017.8246144
  35. 35.
    Pucci M, Cirrincione M (2011) Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans Ind Electron 58:37–47.  https://doi.org/10.1109/TIE.2010.2043043CrossRefGoogle Scholar
  36. 36.
    Khanali M, Ahmadzadegan S, Omid M et al (2018) Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran. Int J Energy Environ Eng 9:399–411.  https://doi.org/10.1007/s40095-018-0280-xCrossRefGoogle Scholar
  37. 37.
    Chang TP (2011) Wind energy assessment incorporating particle swarm optimization method. Energy Convers Manag 52:1630–1637.  https://doi.org/10.1016/J.ENCONMAN.2010.10.024CrossRefGoogle Scholar
  38. 38.
    Yang X, Liu G, Li A, Van Dai L (2017) A predictive power control strategy for DFIGs based on a wind energy converter system. Energies 10.  https://doi.org/10.3390/en10081098CrossRefGoogle Scholar
  39. 39.
    Medjber A, Guessoum A, Belmili H, Mellit A (2016) New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy 106:137–146.  https://doi.org/10.1016/J.ENERGY.2016.03.026CrossRefGoogle Scholar
  40. 40.
    Kamal S, Bandyopadhyay B (2014) Higher order sliding mode control: a control lyapunov function based approach. WSEAS Trans Syst Control 9:38–46Google Scholar
  41. 41.
    Selvi V, Umarani DR (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5:4Google Scholar
  42. 42.
    Vzquez Prez S, Len Galvn JI, Garca Franquelo L et al (2009) Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors. In: International conference on industrial technology, Gippsland, Victoria, Australia. IEEE, pp 1–6Google Scholar
  43. 43.
    Kamal T, Karabacak M, Hassan SZ et al (2018) A robust online adaptive B-spline MPPT control of three-phase grid-coupled photovoltaic systems under real partial shading condition. IEEE Trans Energy Convers 1.  https://doi.org/10.1109/TEC.2018.2878358
  44. 44.
    Atakulreka A, Sutivong D (2007) Avoiding local minima in feedforward neural networks by simultaneous learning BT. In: Orgun MA, Thornton J (eds) AI 2007: advances in artificial intelligence. Springer, Heidelberg, Berlin, pp 100–109CrossRefGoogle Scholar
  45. 45.
    Hassan SZ, Li H, Kamal T et al (2017) Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems. Energies 10:394.  https://doi.org/10.3390/en10030394CrossRefGoogle Scholar
  46. 46.
    Abiyev RH, Kaynak O (2008) Identification and control of dynamic plants using fuzzy wavelet neural networks. In: 2008 IEEE international symposium on intelligent control. IEEE.  https://doi.org/10.1109/ISIC.2008.4635940
  47. 47.
    Badar R, Khan L (2013) Hybrid neuro-fuzzy legendre-based adaptive control algorithm for static synchronous series compensator. Electr Power Compon Syst.  https://doi.org/10.1080/15325008.2013.792882CrossRefGoogle Scholar
  48. 48.
    Cao C, Ma L, Xu Y (2012) Adaptive control theory and applications. J Control Sci Eng 2012:2MathSciNetCrossRefGoogle Scholar
  49. 49.
    Tao G (2003) Adaptive control design and analysis. WileyGoogle Scholar
  50. 50.
    Mumtaz S, Khan L, Ahmed S, Bader R (2017) Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system. PLoS One 12:e0183750.  https://doi.org/10.1371/journal.pone.0183750CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tariq Kamal
    • 1
    • 2
    Email author
  • Murat Karabacak
    • 3
  • Syed Zulqadar Hassan
    • 4
  • Luis M. Fernández Ramírez
    • 5
  • Indrek Roasto
    • 6
  • Laiq Khan
    • 7
  1. 1.Faculty of Engineering, Department of Electrical and Electronics EngineeringSakarya UniversitySakaryaTurkey
  2. 2.Department of Electrical Engineering, Research Group in Electrical Technologies for Sustainable and Renewable Energy (PAIDI-TEP023)Higher Polytechnic School of Algeciras, University of CádizCádizSpain
  3. 3.Department of Electrical and Electronics EngineeringFaculty of Technology, Sakarya University of Applied SciencesSakaryaTurkey
  4. 4.School of Electrical EngineeringChongqing UniversityChongqingChina
  5. 5.Department of Electrical Engineering, Research Group in Electrical Technologies for Sustainable and Renewable Energy (PAIDI-TEP-023)University of CádizEPS Algeciras, Algeciras (Cádiz)Spain
  6. 6.Department of Electrical Power Engineering and MechatronicsTallinn University of Technology (TalTech)TallinnEstonia
  7. 7.Department of Electrical EngineeringCOMSATS University Islamabad, Abbottabad CampusKhyber PakhtunkhwaPakistan

Personalised recommendations