An Integrated Development Process for Stiffened Shell Lightweight Structures

  • J. KrieglsteinerEmail author
  • P. Horst
  • C. Schmidt
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 134)


In order to develop lightweight structures that can be produced efficiently, an interaction of the disciplines of structural design and production planning needs to be established early in the development process. For the special case of stiffened shell structures, a procedural model is developed based on the German standard VDI 2221. It features two main connections of both disciplines. First, an integrated concept description covers solution aspects of both disciplines. Second, a direct cooperation of structural design and production planning during integrated form design is needed to respect the strong interdependency of part design and production processes as particularly seen for composite structures.


Lightweight structures Composite structures Design-to-cost Integrated design Production planning Automated design Procedural model VDI 2221 



The authors would like to thank the German Research Foundation for the support of the project Integrated method for process planning and structural design of composite structures (ProDesign, HO 2122/26-1).


  1. 1.
    Denkena, B., Horst, P., Schmidt, C., Behr, M., Krieglsteiner, J.: Efficient production of CFRP lightweight structures on the basis of manufacturing considerations at an early design stage. In: Denkena, B. (ed.) Proceedings of the 4th Machining Innovations Conference, Hanover, 18–19 Sept 2013, pp. 131–136. Springer (2014)Google Scholar
  2. 2.
    Niu, M.C.-Y.: Airframe Stress Analysis and Sizing. Conmilit Press Ltd., Hong Kong (1997)Google Scholar
  3. 3.
    Denkena, B., Horst, P., Schmidt, C., Behr, M., Krieglsteiner, J.: Estimation of production cost in an early design stage of CFRP lightweight structures. In: Proceedings of 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering (2016)Google Scholar
  4. 4.
    Karaki, M., Hallal, A., Younes, R, Trochu, F, Lafon, P., Hayek, A., Kobeissy, A., Fayad, A.: A comparative analytical, numerical and experimental analysis of the microscopic permeability of fiber bundles in composite materials. Int. J. Compos. Mater. (2017).
  5. 5.
    Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden, 2nd edn. Springer, Berlin u.a (2007)Google Scholar
  6. 6.
    Verein Deutscher Ingenieure: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Beuth, Berlin (VDI 2221) (1993)Google Scholar
  7. 7.
    Fallböhmer, M.: Generieren alternativer Technologieketten in frühen Phasen der Produktentwicklung. Dissertation, RWTH Aachen (2000)Google Scholar
  8. 8.
    Henning, H.: Modellbasierte Prozess-Adaption in der Feinplanung fertigungstechnischer Prozessketten. Berichte aus dem IFW, 10/2012. PZH-Verl., Garbsen (2012)Google Scholar
  9. 9.
    Hufenbach, W., Helms, O.: Konstruieren von Strukturbauteilen aus Faser-Kunststoff-Verbunden. In: Feldhusen, J., Grote, K.-H. (eds.) Pahl/Beitz Konstruktionslehre, 8th edn. Springer, Berlin, Heidelberg (2013)Google Scholar
  10. 10.
    Ashby, M.F.: Materials Selection in Mechanical Design, 2nd edn. Butterworth Heinemann, Oxford (1999)Google Scholar
  11. 11.
    Krus, P.: Design space configuration for minimizing design information entropy. In: Chakrabarti, A. (ed.) ICoRD’15—Research into Design Across Boundaries Volume 1. Theory, Research Methodology, Aesthetics, Human Factors and Education, pp. 51–60. Springer, India, Imprint, Springer, New Delhi (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Aircraft Design and Lightweight StructuresTechnische Universität BraunschweigBrunswickGermany
  2. 2.Institute of Production Engineering and Machine ToolsLeibniz University HannoverHanoverGermany

Personalised recommendations