Advertisement

Exploring the Possibilities of Using Biomimicry to Improve the Thermal Behaviour of Walling Units

  • Naman MirajkarEmail author
  • Avlokita Agrawal
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 134)

Abstract

Biomimicry refers to the process of applying nature’s expertise in solving manmade problems. One of the biggest problems we face today in the building industry is that of cooling in hot climatic zones and heating in colder climatic zones of the world. In India, where the average temperature is on the higher side of the spectrum, the major focus in the building industry is on efficient cooling. This paper explores how the idea of Biomimicry may be used to identify a midway solution for efficient cooling in India. This paper will focus on techniques that can be applied to walling units in buildings. This study is majorly a secondary study of natural entities or systems pertaining to their thermal behaviour. It will weigh the pros and cons and discuss the possibility of applying these biomimetic ideas to improve thermal performance in walling units.

Keywords

Biomimicry Cooling Thermal behaviour Walling units 

References

  1. 1.
    Tomasello, M.: The human adaptation for culture. Annu. Rev. Anthropol. 28, 509–529 (1999)CrossRefGoogle Scholar
  2. 2.
    Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. William Morrow, New York (1997)Google Scholar
  3. 3.
    Badarnah, L., Kadri, U.: A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 58(2), 120–133 (2015)CrossRefGoogle Scholar
  4. 4.
    Lim, C., Yun, D., Park, I., Yoon, B.: A systematic approach for new technology development by using a biomimicry-based TRIZ contradiction matrix. Creat. Innov. Manage. 1–17 (2018)Google Scholar
  5. 5.
    Benyus, J.M.: A Biomimicry Primer. Biomimicry 3.8Google Scholar
  6. 6.
    Bechert, D.M., Bartenwerfer, M., Hoppe, G., Reif, W.E.: Drag Reduction Mechanisms Derived From Shark Skin. Congress of the International Council of the Aeronautical Sciences, vol. 2. pp. 1044–1068 (1986)Google Scholar
  7. 7.
    Fu, Y.F., Yuan, C.Q., Bai, X.Q.: Marine drag reduction of shark skin inspired riblet surfaces. Biosurface Biotribology 3, 11–24 (2017)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Zhang, X., Ma, L., Che, D., Zhang, D., Sudarshan, T.S.: Investigation on large-area fabrication of vivid shark skin with superior surface functions. Appl. Surf. Sci. 316, 124–131 (2014)CrossRefGoogle Scholar
  9. 9.
    Eastgate Building. http://www.mickpearce.com/Eastgate.html (Visited on 18/04/2018)
  10. 10.
    Zira Island Carbon Neutral Master Plan/BIG Architects. https://www.archdaily.com/12956/zira-island-carbon-neutral-master-plan-big-architects (Visited on 18/04/2018)
  11. 11.
    Zari, M.P.: Biomimetic approaches to architectural design for increased sustainability. In: Sustainable Building Conference 007 (2006)Google Scholar
  12. 12.
    Radwan, G.A.N., Osama, N.: Biomimicry, an approach, for energy efficient building skin design. Procedia Environ. Sci. 34(34), 178–189 (2016)CrossRefGoogle Scholar
  13. 13.
    Jin, G.W.X., Zhang, X., Cao, Y.: Thermal performance evaluation of the wall using heat flux time lag and decrement factor. Energy Build. 47, 369–374 (2012)CrossRefGoogle Scholar
  14. 14.
    Elias-ozkan, S.T., Summers, F., Surmeli, N.: A comparative study of the thermal performance of building materials. In: PLEA2006 Conference, pp. 6–8 (2006)Google Scholar
  15. 15.
    Dondi, M., Mazzanti, F., Principi, P., Raimondo, M., Zanarini, G.: Thermal conductivity of clay bricks. J. Mater. Civ. Eng. 16(1), 8–14 (2004)CrossRefGoogle Scholar
  16. 16.
    Davraz, M., Koru, M., Akdağ, A.E.: The effect of physical properties on thermal conductivity of lightweight aggregate. Procedia Earth Planet Sci. 15, 85–92 (2015)CrossRefGoogle Scholar
  17. 17.
    BIS:IS 9403 (1980): Method of Test for Thermal Conductance and Transmittance of Built Up Sections by Means of Guarded Hot Box. Bureau of Indian Standards (1980)Google Scholar
  18. 18.
    ASTM International: ASTM C1363-97 : Standard Test Method for the Thermal Performance of Building Assemblies by Means of a Hot Box Apparatus 1 (1997)Google Scholar
  19. 19.
    Akresh, M.E., Ardia, D.R., King, D.I.: Effect of nest characteristics on thermal properties, clutch size, and reproductive performance for an open-cup nesting songbird. Avian Biol. Res. 10(2), 107–118 (2017)CrossRefGoogle Scholar
  20. 20.
    Mainwaring, M.C., Hartley, I.R., Lambrechts, M.M., Deeming, D.C.: The design and function of birds’ nests. Ecol. Evol. 4(20), 3909–3928 (2014)CrossRefGoogle Scholar
  21. 21.
    Grant, G.S.: Avian incubation: egg temperature, nest humidity, and behavioral thermoregulation in a hot environment. Ornithol. Monogr. 30, 87 (1982)Google Scholar
  22. 22.
    Deeming, D.C.: Importance of nest type on the regulation of humidity in bird nests. Avian Biol. Res. 4(1), 23–31 (2011)CrossRefGoogle Scholar
  23. 23.
    Marino, C., Nucara, A., Pietrafesa, M.: Thermal comfort in indoor environment: effect of the solar radiation on the radiant temperature asymmetry. Sol. Energy 144, 295–309 (2017)CrossRefGoogle Scholar
  24. 24.
    Marino, C., Nucara, A., Pietrafesa, M.: Mapping of the indoor comfort conditions considering the effect of solar radiation. Sol. Energy 113, 63–77 (2015)CrossRefGoogle Scholar
  25. 25.
    Hidden, P.A.: Thermoregulation in African Elephants (Loxodonta africana). Faculty of Science, University of the Witwatersrand, Johannesburg (2009)Google Scholar
  26. 26.
    Mole, M.A., DÁraujo, S.R., van Aarde, R.J., Mitchell, D., Fuller, A.: Coping with heat: behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4(1) (2016)CrossRefGoogle Scholar
  27. 27.
    Wright, P.G., Luck, C.P.: Do elephants need to sweat? S. Afr. J. Zool. 19(4), 270–274 (1984)CrossRefGoogle Scholar
  28. 28.
    Weissenböck, N.M., Weiss, C.M., Schwammer, H.M., Kratochvil, H.: Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. J. Therm. Biol. 35(4), 182–188 (2010)CrossRefGoogle Scholar
  29. 29.
    Miller, L.P., Denny, M.W.: Importance of behavior and morphological traits for controlling body temperature in littorinid snails. Biol. Bull. 220(3), 209–223 (2011)CrossRefGoogle Scholar
  30. 30.
    Seuront, L., Ng, T.P.T.: Standing in the sun: infrared thermography reveals distinct thermal regulatory behaviours in two tropical high-shore littorinid snails. J. Molluscan Stud. 82(2), 336–340 (2016)CrossRefGoogle Scholar
  31. 31.
    Wong, Y.M., Lim, S.S.L.: Influence of shell morphometry, microstructure, and thermal conductivity on thermoregulation in two tropical intertidal snails. Invertebr. Biol. 136(2), 228–238 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Architecture and PlanningIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations