Preparation and Properties of PMMA Nanofibers with Photochromic and Photoluminescent Functions

  • Congcong Li
  • Peng XiEmail author
  • Tianxiang Zhao
  • Xiaoqing Wang
  • Xuhuan Yan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)


A new polymer with spiropyran photochromic units (SP-PMMA) was synthesized by atom transfer radical polymerization (ATRP). The 1H NMR, FT-IR, GPC and TGA results show that the SP-PMMA has good structure features such as controllable molecular weight, narrow molecular weight distribution, and good thermal stability. SP-PMMA nanofibers with multi-base photochromic and photoluminescent functions have been successfully prepared by electrospinning technique and synergistic coordination of the SP-PMMA with organic rare earth complexes. Scanning electron microscopy (SEM) observations show that the as-prepared nanofibers have a smooth surface, with the average diameter about 600 nm. Fluorescent and UV absorption spectra indicate that the SP-PMMA nanofibers can show red, green, yellow, blue-purple, and white colors under the excitation of 295, 367 nm UV lights and far-infrared light. The results of the present study verify that the SP-PMMA nanofibers can exhibit multi-base photochromic and photoluminescent functions. These kinds of multi-base photochromic and photoluminescent functions are of great significance for the development of multifunctional photochromic fibers.



The authors appreciate the financial support provided by the Natural Scientific Foundation of China (51373118) and the Application Fundamental and Advanced Technology Research Proposal Project of Tianjin, China (18JCZDJC38300, 13JCYBJC17200).

Author Information

Notes The authors declare no competing financial interest.


  1. 1.
    Y. Zhang, L. Luo, K. Li et al., Large and Reversible in-situ up-conversion photoluminescence modulation based on photochromism via electric-field and thermal stimulus in ferroelectrics. J. Eur. Ceram. Soc. 38(9), 3154–3161 (2018)CrossRefGoogle Scholar
  2. 2.
    V. Ozhogin Ilya, V. Tkachev Valery, S. Lukyanov Boris et al., Synthesis, structure and photochromic properties of novel highly functionalized spiropyrans of 1,3-benzoxazin-4-one series. J. Mol. Struct. 1161, 18–25 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Hao, L. Zhang, J. Shen et al., Structural and photochromic modulation of dimethylbenzotria-zolium iodoargentate hybrid materials. Dyes Pigm. 153, 284–290 (2018)CrossRefGoogle Scholar
  4. 4.
    X. Zou, X. Xiao, S. Zhang et al., A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from N-isopropylacrylamide with water-soluble spiropyran derivative. J. Biomater. Sci. Polym. Ed. 32, 1–16 (2018)Google Scholar
  5. 5.
    J. Wei, X. Jiao, T. Wang et al., Electrospun photochromic hybrid membranes for flexible rewritable media. ACS Appl. Mater. Interfaces. 8(43), 29713–29720 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Großmann, A. Klick, C. Lemke et al., Light-triggered control of plasmonic refraction and group delay by photochromic molecular switches. Acs Photonics 2(9), 1327–1332 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Bushuyev Oleksandr, M. Aizawa, A. Shishido et al., Shape-shifting azo dye polymers: towards sunlight-driven molecular devices. Macromol. Rapid Commun. 39(1), 170–173 (2017)Google Scholar
  8. 8.
    M. Estrader, J. Salinas Uber, A. Barrios Leoni et al., Magneto-optical molecular device: interplay of spin crossover, luminescence, photomagnetism and photochromism. Angew. Chem. Int. Ed. 56(49), 15622–15627 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Kinashi, T. Suzuki, H. Yasunaga et al., Carrier-assisted dyeing of poly(l-lactic acid) fibers with dispersed photochromic spiropyran dyes. Dyes Pigm. 145, 444–450 (2017)CrossRefGoogle Scholar
  10. 10.
    M.N. Liu, X. Yan, M.H. You et al., Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. J. Appl. Polym. Sci. 135(23), 463–468 (2018)Google Scholar
  11. 11.
    J. Zhang, J. Li, M. Huo et al., Photochromic inorganic/organic thermoplastic elastomers. Macromol. Rapid Commun. 38(16), 32–36 (2017)CrossRefGoogle Scholar
  12. 12.
    K.H. Fries, J.D. Driskell, S. Samanta et al., Spectroscopic analysis of metal ion binding in spiropyran containing polymer thin films. Anal. Chem. 82(8), 3306–3314 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Fu, C. Fan, G. Liu et al., A colorimetric and fluorescent sensor for Cu2+, and F, based on a diarylethene with a 1,8-naphthalimide Schiff base unit. Sensors & Actuators B Chemical 239, 295–303 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Tsuruoka, R. Hayakawa, K. Kobashi et al., Laser patterning of optically reconfigurable transistor channels in a photochromic diarylethene layer. Nano Lett. 16(12), 7474 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Miao, S. Wang, M. Liu, Reversible quadruple switching with optical, chiroptical, helicity, and macropattern in self-assembled spiropyran gels. Adv. Func. Mater. 27(29), 1701368 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Ma, C. Li, D. Shu et al., Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: structure and luminescence properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 190, 68–75 (2018)CrossRefGoogle Scholar
  17. 17.
    B. Gao, F. Li, R. Zhang et al., Preparation of aromatic carboxylic acid-functionalized polysulfone and preliminary exploration of florescence emission character of formed polymer-rare earth complexes. Synth. Met. 162(5–6), 503–510 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Ventura, R. Byrne, F. Audouin et al., Atom transfer radical polymerization synthesis and photoresponsive solution behavior of spiropyran end-functionalized polymers as simplistic molecular probes. J. Polym. Sci., Part A: Polym. Chem. 49(16), 3455–3463 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Liu, J. Hu, X. Yang et al., Preparation and characterization of dual-responsive spiropyran-based random polymer brushes via surface-initiated atom transfer radical polymerization. Des. Monomers Polym. 19(2), 193–204 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Pauly Anja, Schöller Katrin, Baumann Lukas et al., ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems. Sci. Technol. Adv. Mater. 16(3), 272–275 (2015)Google Scholar
  21. 21.
    D. Shu, P. Xi, S. Li et al., Morphologies and properties of PET nano porous luminescence fiber: oil absorption and fluorescence-indicating functions. ACS Appl. Mater. Interfaces. 10(3), 2828–2836 (2018)CrossRefGoogle Scholar
  22. 22.
    F. Khakzad, A.R. Mahdavian, H. Salehi-Mobarakeh et al., Redispersible PMMA latex nanoparticles containing spiropyran with photo-, pH- and CO2-responsivity. Polymer 101, 274–283 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, C.Y. Hong, C.Y. Pan, Spiropyran-based hyperbranched star polymer: synthesis, phototropy, FRET, and bioapplication. Biomacromol 13(8), 2585–2593 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Li, Z. Jiang, M. Li et al., Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances 4(95), 52973–52985 (2014)CrossRefGoogle Scholar
  25. 25.
    F.L. Zhao, L. Gao, C.H. Wang et al., Electrospinning preparation and properties of Tb(phen)L3/PMMA rare earth luminescent fibers. Appl. Mech. Mater. 618, 94–99 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Obaid, A.M. Barakat Nasser, O.A. Fadali et al., Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem. Eng. J. 259(1), 449–456 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Zhao, P. Xi, H. Xia et al., Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: morphology and luminescence properties. J. Alloy. Compd. 641, 132–138 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Breslin Vanessa, Miguel A. Garcia-Garibay, Transmission spectroscopy and kinetics in crystalline solids using aqueous nanocrystalline suspensions: the spiropyran-merocyanine photochromic system. Cryst. Growth Des. 17(2), 637–642 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Tianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Advanced Fibers and Energy StorageTianjinPeople’s Republic of China
  3. 3.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjinPeople’s Republic of China

Personalised recommendations