Advertisement

Study on the Semiconducting Grain and Insulating Barrier Layer in Aluminum/Niobium Co-doped CCTO

  • Ali Wen
  • Yanyan Zhang
  • Jiliang Zhu
  • Daqing YuanEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)

Abstract

In this paper, aluminum/niobium co-doped calcium copper titanate ceramics were synthesized by a dry route based on the chemical formula of CaCu3Ti4−xAl0.5xNb0.5xO12 with x = 0.0, 0.2, 0.5, and 5.0%. The dielectric constants of the ceramics were over 104. X-ray diffraction and scanning electron microscopy results show the high dielectric constant comes from the capacitance effect of inner barrier layers (IBLC). In order to explore the origin of the semiconducting grains in it, X-ray photoelectron spectroscopy (XPS) was used. The experimental results show the existence of Ti3+ ions in sample, which caused the lattice polaronic distortion and the formation of Ti3+–O–Ti4+ bonds. Under the applied electric field, the polaron can be transported from a Ti3+–O–Ti4+ bonds to another, which leads to the generation of dc conduction. The existence of Ti3+ ion results in the semiconducting of grains in aluminum/niobium co-doped calcium copper titanate ceramics. The formation process of Ti3+ ion was also discussed.

References

  1. 1.
    R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Ren, X. Zhao, L. Yang, K. Wu, Effect of CeO2 and ZrO2 doping on the dielectric characteristics of CCTO ceramics. In: 2017 IEEE Electrical Insulation Conference, EIC 2017, pp. 11–14 (2017)Google Scholar
  3. 3.
    R.T.A.R. Prasath, N.K. Roy, S.N. Mahato, P. Thomas, Mineral oil based high permittivity CaCu3Ti4O12 (CCTO) nanofluids for power transformer application. IEEE Trans. Dielectr. Electr. Insul. 24, 2344–2353 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Rao, J. Yue, C.P. Wong, Material characterization of high dielectric constant polymer–ceramic composite for embedded capacitor to RF application. Mater. Sci. 92, 2228–2231 (2004)Google Scholar
  5. 5.
    S. Marković, M. Lukić, Č. Jovalekić, S.D. Škapin, D. Suvorov, D. Uskoković, Sintering effects on microstructure and dielectric properties of CCTO ceramics (2012)Google Scholar
  6. 6.
    G. Riquet, S. Marinel, Y. Breard, C. Harnois, A. Pautrat, Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: microstructures and dielectric properties. Ceram. Int. 0–1 (2018)Google Scholar
  7. 7.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (2003)Google Scholar
  8. 8.
    L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60, 15–62 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Nautiyal, C. Autret, C. Honstettre, S. Didry, M.El Amrani, S. Roger, A. Ruyter, Dielectric properties of CCTO/MgTiO3 composites: a new approach for capacitor application. Int. J. Adv. Nanomater. 1, 27–40 (2015)Google Scholar
  10. 10.
    A. Wen, D.Q. Yuan, X.H. Zhu, J.G. Zhu, D.Q. Xiao, J.L. Zhu, Electrical and dielectric properties of aluminum/niobium co-doped CaCu3Ti4O12 ceramics. Ferroelectrics 492, 1–9 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3−yMgy)Ti4O12 ceramics: importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 36, 1391–1398 (2016)CrossRefGoogle Scholar
  13. 13.
    X.J. Luo, Y.S. Liu, C.P. Yang, S.S. Chen, S.L. Tang, K. Bärner, Oxygen vacancy related defect dipoles in CaCu3Ti4O12: detected by electron paramagnetic resonance spectroscopy. J. Eur. Ceram. Soc. 35, 2073–2081 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Schmidt, D. Sinclair, Capacitors. Theory of operation, behavior and safety regulations, in CaCu3Ti4O12 (CCTO) Ceramics for Capacitor Applications (Nova Science Publishers, Inc., 2013)Google Scholar
  15. 15.
    J. Li, A.W. Sleight, M.A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12. Solid State Commun. 135, 260–262 (2005)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, Z.-J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70 (2004)Google Scholar
  17. 17.
    S.-W. Choi, S.-H. Hong, Y.-M. Kim, Electric and dielectric properties of Nb-Doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 90, 4009–4011 (2007)Google Scholar
  18. 18.
    S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, The route to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Shri Prakash, K.B.R. Varma, Microstructural and dielectric properties of donor doped (La3+) CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 17, 899–907 (2006)Google Scholar
  20. 20.
    P. Thomas, K. Dwarakanath, K.B.R. Varma, Effect of calcium stoichiometry on the dielectric response of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 32, 1681–1690 (2012)CrossRefGoogle Scholar
  21. 21.
    R.A. Mackie, S. Singh, J. Laverock, S.B. Dugdale, D.J. Keeble, Vacancy defect positron lifetimes in strontium titanate. Phys. Rev. B—Condens. Matter Mater. Phys. 79, 1–31 (2009)Google Scholar
  22. 22.
    H. Xiao, C. Yang, C. Huang, L. Xu, D. Shi, V. Marchenkov, I. Medvedeva, K. Baärner, Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation. J. Appl. Phys. 111, 063713 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Chikada, T. Kubota, A. Honda, S. Higai, Y. Motoyoshi, N. Wada, K. Shiratsuyu, Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3. J. Appl. Phys. 120, 1–6 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ali Wen
    • 1
  • Yanyan Zhang
    • 2
  • Jiliang Zhu
    • 3
  • Daqing Yuan
    • 1
    Email author
  1. 1.China Institute of Atomic EnergyBeijingChina
  2. 2.Qingdao Technological University Qindao CollegeQingdaoChina
  3. 3.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations