Effect of Ambient Temperature on the Emission Spectra of Mg2+- and Ga3+-Doped CaS:Eu2+ Red Phosphors

  • Na Zhang
  • Renju ChengEmail author
  • Hanwu Dong
  • Haili Li
  • Wenjun Liu
  • Bin Jiang
  • Liu Yang
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)


The photoluminescence spectra of alkaline earth sulfide showed the characteristics of temperature dependence. In this work, Mg2+- and Ga3+-doped CaS:Eu2+ phosphors have been synthesized in the tube atmosphere furnace and the influence of ambient temperature on the emission spectra of Mg2+- and Ga3+-doped CaS:Eu2+ red phosphors was studied. The results showed that with the increment of ambient temperature, the emission intensities of the CaS:Eu2+ phosphors doped with Mg2+ and Ga3+ decreased rapidly, the emission peaks of the samples changed from deep red to red, and the half peak width increased. This is due to the fact that the high temperature makes more excited molecules at higher vibrational levels, and the fluorescence is mainly caused by the high vibrational energy level of the excited state. By configurational coordinate diagram of the luminescence center, it is confirmed that back tunneling from the ground state to the excited state leads to the increased FWHMs and the decreased emission intensities.



The authors are grateful to the financial supports from National Natural Science Foundation of China (NSFC) (51504052, 51701035), the foundations from Chongqing Science and Technology Commission (cstc2016jcyjA0157), Chongqing Special Key Technology Innovation of Key Industries (CSTC2017ZDCY-ZDZXX0006).


  1. 1.
    S. Ray, P. Tadge, S. Dutta, T.M. Chen, G.B. Nair, S.J. Dhoble, Synthesis, luminescence and application of BaKYSi2O7:Eu2+: a new blue-emitting Phosphor for near-UV white-light LED. Ceram. Int. 44(7), 8334–8343 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.C. Qiang, Z.F. Pan, X.Y. Ye, M.Z. Liang, J.F. Xu, J.H. Huang, W.X. You, H.L. Yuan, Ce3+ doped BaLu2Al4SiO12: a promising green-emitting phosphor for white LEDs. J. Lumin. 203, 609–615 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Tang, D.F. Zhang, L. Yang, Photoluminescence characterization of a novel red-emitting phosphor In2(MoO4)3:Eu3+ for white light emitting diodes. J. Lumin. 132(6), 1489–1492 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, J. Liu, X. Yang, X. Yu, J. Zhuang, A promising deep red phosphor AgLaMo2O8:Pr3+ with Blue excitation for white LED application. J. Electrochem. Soc. 157(3), H278–H280 (2009)CrossRefGoogle Scholar
  5. 5.
    H.D. Ju, X.J. Deng, Z.H. Weng, Q. Wu, B. Wang, Y.H. Ma, H. Wang, LiSr3SiO4Cl3-A novel host lattice for Eu2+-activated luminescent materials. Ceram. Int. 42(6), 6846–6849 (2016)CrossRefGoogle Scholar
  6. 6.
    Q. Liu, J.L. Shen, T. Wu, L.X. Wang, J. Zhang, Q.T. Zhang, L. Zhang, Enhanced luminescence of a Eu3+ -activated double perovskite (Na, Li) LaMgWO6 phosphor based on a site inducing energy transfer. Ceram. Int. 42(12), 13855–13862 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Pust, V. Weiler, C. Hecht, A. Tucks, A.S. Wochnik, A.K. Henss, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13(9), 891–896 (2014)Google Scholar
  8. 8.
    A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar, Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ce)3O12 and its use in LED based lighting. Chem. Mater. 18(14), 3314–3322 (2006)CrossRefGoogle Scholar
  9. 9.
    J.C. Sun, X.Y. Mi, L.J. Lei, X.Y. Pan, S.Y. Chen, Z. Wang, Z.H. Bai, X.Y. Zhang, Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. CrystEngComm 17(41), 7888–7895 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.D. Huh, J.Y. Park, S.S. Kweon, J.H. Kim, J.G. Kim, Y.R. Do, Phosphor converted three-band white LED. Bull. Korean Chem. Soc. 25(10), 1585–1588 (2004)CrossRefGoogle Scholar
  11. 11.
    W. Lehmann, Alkaline earth sulfide phosphors activated by copper, silver, and gold. J. Electrochem. Soc. 117(11), 1389–1393 (1970)CrossRefGoogle Scholar
  12. 12.
    H. Texin, H. Williams, R. Ward, The effect of activator concentration on the infrared-sensitive Phosphor, Strontium Selenide-Samarium, Europium. J. Am. Chem. Soc. 70(1), 310–322 (1949)Google Scholar
  13. 13.
    W. Lehamnn, F.M. Ryan, Cathodoluminescence of CaS:Ce3+ and CaS:Eu2+ phosphors. J. Electrochem. Soc. 118(3), 477–482 (1971)CrossRefGoogle Scholar
  14. 14.
    R.L. Nyenge, H.C. Swart, O.M. Ntwaeaborwa, The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu2+ phosphors. Physica B 480, 186–190 (2016)CrossRefGoogle Scholar
  15. 15.
    L.X. Wang, Q. Liu, K. Shen, Q.T. Zhang, L. Zhang, B. Song, C.P. Wong, A high quenching content red-emitting phosphor based on double perovskite host BaLaMgSbO6 for white LEDs. J. Alloy. Compd. 696, 443–449 (2017)CrossRefGoogle Scholar
  16. 16.
    C.F. Guo, D.X. Huang, Q. Su, Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng., B 130(1–3), 189–193 (2006)CrossRefGoogle Scholar
  17. 17.
    R.L. Nyenge, H.C. Swart, O.M. Ntwaeaborwa, Luminescent properties, intensity degradation and X-ray photoelectron spectroscopy analysis of CaS:Eu2+ powder. Opt. Mater. 40, 68–75 (2015)CrossRefGoogle Scholar
  18. 18.
    D.D. Jia, W.Y. Jia, D.R. Evans, W.M. Dennis, H.M. Liu, J. Zhu, W.M. Yen, Trapping processes in CaS:Eu2+, Tm3+. J. Appl. Phys. 88(6), 3402–3407 (2000)CrossRefGoogle Scholar
  19. 19.
    C.C. Lin, A. Meijerink, R.S. Liu, Critical red components for next-generation white LEDs. J. Phys. Chem. Lett. 7(3), 495–503 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett. 387(1), 2–6 (2004)CrossRefGoogle Scholar
  21. 21.
    L. Yang, N. Zhang, R.Y. Zhang, B. Wen, H.L. Li, X.B. Bian, A CaS:Eu based red-emitting phosphor with significantly improved thermal quenching resistance for LED lighting applications. Mater. Lett. 129(32), 134–136 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, S.Q. Luo, R.J. Cheng, H.L. Li, R.Y. Zhang, B. Jing, L. Yang, in Temperature Dependence of Ga3+-Doped CaS:Eu2+ Phosphors. Chinese Materials Conference (Springer, Singapore, 2017), pp. 609–615Google Scholar
  23. 23.
    J.S. Kim, Y.H. Park, S.M. Kim, J.C. Choi, H.L. Park, Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun. 133(7), 445–448 (2005)CrossRefGoogle Scholar
  24. 24.
    Y.S. Yan, On the origin of temperature dependence of the emission maxima of Eu2+ and Ce3+ activated phosphors. Opt. Mater. 79, 172–185 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, New York, 1998)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Na Zhang
    • 1
  • Renju Cheng
    • 1
    Email author
  • Hanwu Dong
    • 1
  • Haili Li
    • 1
    • 3
  • Wenjun Liu
    • 2
  • Bin Jiang
    • 2
  • Liu Yang
    • 1
  1. 1.Chongqing Academy of Science and TechnologyChongqingPeople’s Republic of China
  2. 2.College of Materials Science and Engineering, Chongqing UniversityChongqingPeople’s Republic of China
  3. 3.College of International Business, Sichuan International Studies UniversityChongqingPeople’s Republic of China

Personalised recommendations