Fabrication of Multiphase Particles and Grain Refinement of Al-Containing Magnesium

  • Chun-Hua Li
  • Yu Fu
  • Han Wang
  • Hai HaoEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


Grain refinement is an effective way to improve the mechanical properties of magnesium alloys. However, refining efficiency of grain refiner for Al-containing magnesium alloys is unstable, restricting the further applications in the engineering field. In this paper, a typical Al-containing magnesium alloy (AZ91) was studied. The Al–Ti–C–Y alloy containing multiphase particles (Al4C3, TiC, Al2Y) was prepared by self-propagating high-temperature synthesis (SHS) and melting-casting method. Meanwhile, the size, morphology, and distribution of multiphase particles in the Al–Ti–C–Y alloy and the grain refinement performance of multiphase particles for Al-containing magnesium alloys were investigated. The grain size of the alloys decreases first and then increases with the increasing amount of master alloy added. The highest refining efficiency of Al–Ti–C–Y for AZ91 is 51% with 1.5 wt% master alloy added.


Multiphase particles Heterogeneous nucleation Al–Ti–C–Y AZ91 


  1. 1.
    B.L. Mordike, Magnesium properties-applications-potential. J. Mater. Sci. Eng. A. 302(1), 37–45 (2001)CrossRefGoogle Scholar
  2. 2.
    L.H. Wen, J.I. Ze-Sheng, Research and application of heat-resistant magnesium alloy and its strengthening mechanism. Light Alloy Fabr. Technol. (2014)Google Scholar
  3. 3.
    I.J. Polmear, Magnesium alloys and applications. J. Mater. Sci. Technol. 10(1), 1–16 (1994)CrossRefGoogle Scholar
  4. 4.
    M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Mag. Tech. 39(9–10), 851–865 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Ding, P. Fu, L. Peng et al., Advanced magnesium alloys and their applications in aerospace. Spacecraft Environ. Eng. (2011)Google Scholar
  6. 6.
    Y.C. Lee, A.K. Dahle, D.H. Stjohn, Grain Refinement of Magnesium Essential Readings in Magnesium Technology (Springer, 2016), pp. 247–254Google Scholar
  7. 7.
    D.H. Stjohn, M.A. Easton, M. Qian et al., Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application. Metall. Mater. Trans. A., Phys Metall. Mater. Sci. 44(7), 2935–2949 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Ali, D. Qiu, B. Jiang et al., Current research progress in grain refinement of cast magnesium alloys: a review article. J. Alloy. Compd. 619, 639–651 (2015)CrossRefGoogle Scholar
  9. 9.
    S.S. Li, B. Tang, D.B. Zeng, Effects and mechanism of Ca on refinement of AZ91D alloy. J. Alloy. Compd. 437(1), 317–321 (2007)CrossRefGoogle Scholar
  10. 10.
    Y.X. Wang, X.Q. Zeng, W.J. Ding et al., Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electromagnetic casting. Metall. Mater. Trans. A. 38(6), 1358–1366 (2007)CrossRefGoogle Scholar
  11. 11.
    Y.Z. Zhao, X.T. Liu, H. Ha, Effect of Al4C3 particle size distribution in a Al–2.5C master alloy on the refining efficiency of the AZ31 alloy. Acta Metall. Sin. Eng. lett. 30(6), 505–512 (2017)Google Scholar
  12. 12.
    M. Qian, P. Cao, Discussions on grain refinement of magnesium alloys by carbon inoculation. Scr. Mater. 52(5), 415–419 (2005)CrossRefGoogle Scholar
  13. 13.
    X.Y. Liu, H.R. Geng, M. Zuo et al., Influence of MnCO3 addition on the grain refinement of AZ91 magnesium alloy. Appl. Mech. Mater. 703(2), 56–59 (2014)Google Scholar
  14. 14.
    J. Du, M. Wang, M. Zhou et al., Evolutions of grain size and nucleating particles in carbon-inoculated Mg–3% Al alloy. J. Alloy. Compd. 592(14), 313–318 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A. 31(11), 2895–2906 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Tamura, T. Haitani, E. Yano et al., Gain refining mechanism of hight-purity Mg–9% Al alloy ingot and influence of Fe or Mn addition on cast grain size. Light Met. 51(8), 403–408 (2001)CrossRefGoogle Scholar
  17. 17.
    J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr. Mater. 53(9), 1049–1053 (2005)CrossRefGoogle Scholar
  18. 18.
    D. Qiu, M.X. Zhang, J.A. Taylor et al., A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys. Acta Mater. 55(6), 1863–1871 (2007)CrossRefGoogle Scholar
  19. 19.
    P. Cao, M. Qian, D.H. Stjohn, Mechanism for grain refinement of magnesium alloys by superheating. Scr. Mater. 56(7), 633–636 (2007)CrossRefGoogle Scholar
  20. 20.
    M.N. Naik, K.D. Reddy, P.V. Ramaiah et al., Exploration of mechanical behaviour and wear behaviour of Al4C3 reinforced aluminium metal matrix composites. Mater. Today 4(2), 2989–2998 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Liu, Y. Zhang, H. Han, Role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by Al4C3. J. Alloy. Compd. 491(1), 325–329 (2010)CrossRefGoogle Scholar
  22. 22.
    X.T. Liu, H. Hao, The influence of carbon content on Al–Ti–C master alloy prepared by the self-propagating high-temperature synthesis in melt method and its refining effect on AZ31 alloy. J. Alloy. Compd. 623, 266–273 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Hao, X.T. Liu, C.F. Fang et al. Effect of in-situ Al2Y particles on the as-cast/as-rolled microstructure and mechanical properties of AZ31 alloy. J. Mater. Sci. Eng. A. 698 (2017)CrossRefGoogle Scholar
  24. 24.
    H.W. Chang, D. Qiu, J.A. Taylor et al., The role of Al2Y in grain refinement in Mg–Al–Y alloy system. J. Magnes. Alloy. 1(2), 115–121 (2013)CrossRefGoogle Scholar
  25. 25.
    W.C. Lee, S.L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium–carbon–aluminum system. J. Am. Ceram. Soc. 80(1), 53–61 (1997)CrossRefGoogle Scholar
  26. 26.
    Y. Choi, S.W. Rhee, Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC. J. Mater. Sci. 28(24), 6669–6675 (1993)CrossRefGoogle Scholar
  27. 27.
    H.Y. Wang, Q.C. Jiang, X.L. Li et al., In situ synthesis of TiC/Mg composites in molten magnesium. Scr. Mater. 48(9), 1349–1354 (2003)CrossRefGoogle Scholar
  28. 28.
    N. Eustathopoulos, J.C. Joud, P. Desre et al., The wetting of carbon by aluminium and aluminium alloys. J. Mater. Sci. 9(8), 1233–1242 (1974)CrossRefGoogle Scholar
  29. 29.
    C.X. Xu, B.F. Lu, L.L. Zheng et al., Grain refinement of AZ31 magnesium alloy by Al–Ti–C–Y alloy. J. Rare Earth. 26(4), 604–608 (2008)CrossRefGoogle Scholar
  30. 30.
    Z. Wang, X. Liu, J. Zhang et al., Study of the reaction mechanism in the Al–C binary system through DSC and XRD. J. Mater. Sci. 39(6), 2179–2181 (2004)CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, Z.Q. Li, Structural characterization of a mechanical alloyed Al–C mixture. J Alloy. Compd. 414(1–2), 107–112 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Dalian University of TechnologyDalianChina

Personalised recommendations