Advertisement

Deformation Behavior and Constitutive Model for Isothermal Compression of TC4 Alloy

  • Jiangwei Zhong
  • Pan Tao
  • Qingyan XuEmail author
  • Baicheng Liu
  • Zhijun Ji
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The uniaxial hot compression deformation behaviors of TC4 alloy are investigated by a Gleeble-1500D thermo-physical simulator at the temperatures of 750–950 °C and at the strain rates of 0.01–10.0 s−1. The results show that the curves of the true stress–strain exhibit a typical dynamic recrystallization process. The Arrhenius equation is employed to predict the flow stress. The entire flow curve is modeled using the equation, whereas there exists large deviation at almost all of the stain rates. To ensure the accuracy of predicted results, a modified Zener–Hollomon parameter (Z′) is introduced. The results show that the modified constitutive equations established in this study could well predict the value of flow stress in the hot deformation of TC4 alloy.

Keywords

Ti–6Al–4V alloy Hot compression True stress–strain Constitutive model 

References

  1. 1.
    S.Z. Zhang, Y.B. Zhao, C.J. Zhang, J.C. Han, M.J. Sun, M. Xu, The microstructure, mechanical properties, and oxidation behavior of beta-gamma TiAl alloy with excellent hot workability. Mater. Sci. Eng., A 700, 366–373 (2017)CrossRefGoogle Scholar
  2. 2.
    X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, G.L. Chen, Microstructural control of TiAl–Nb alloys by directional solidification. Acta Mater. 60(2), 498–506 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Liu, Z. Wang, X. Li, Y. Su, J. Guo, H. Fu, G. Wang, Continued growth controlling of the non-preferred primary phase for the parallel lamellar structure in directionally solidified Ti–50Al–4Nb alloy. J. Alloy. Compd. 632, 152–160 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15(4), 191–215 (2013)CrossRefGoogle Scholar
  5. 5.
    E. Norouzi, M. Atapour, M. Shamanian, Effect of bonding time on the joint properties of transient liquid phase bonding between Ti–6Al–4V and AISI 304. J. Alloy. Compd. 701, 335–341 (2017)CrossRefGoogle Scholar
  6. 6.
    C.-C. Shen, C.-M. Wang, Effects of hydrogen loading and type of titanium hydride on grain refinement and mechanical properties of Ti–6Al–4V. J. Alloy. Compd. 601, 274–279 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Zhao, J. Chen, X. Lu, H. Tan, X. Lin, W. Huang, Formation mechanism of the α variant and its influence on the tensile properties of laser solid formed Ti-6Al-4V titanium alloy. Mater. Sci. Eng., A 691, 16–24 (2017)CrossRefGoogle Scholar
  8. 8.
    W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 125, 390–400 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Kim, Y.-B. Song, S.H. Lee, Y.-S. Kwon, Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J. Alloy. Compd. 676, 15–25 (2016)CrossRefGoogle Scholar
  10. 10.
    G.-Z. Quan, G.-C. Luo, J.-T. Liang, D.-S. Wu, A. Mao, Q. Liu, Modelling for the dynamic recrystallization evolution of Ti–6Al–4V alloy in two-phase temperature range and a wide strain rate range. Comput. Mater. Sci. 97, 136–147 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, Y. Ning, Z. Yao, H. Guo, Hot deformation behavior of Ti–6.0Al–7.0Nb biomedical alloy by using processing map. J. Alloy. Compd. 587, 183–189 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Han, W. Zeng, Y. Qi, Y. Zhao, Optimization of forging process parameters of Ti600 alloy by using processing map. Mater. Sci. Eng., A 529, 393–400 (2011)CrossRefGoogle Scholar
  13. 13.
    R.G. Guan, Y.T. Je, Z.Y. Zhao, C.S. Lee, Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater. Des. 1980–2015(36), 796–803 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, R.P. Liu, Hot deformation behavior of Ti–20Zr–6.5Al–4V alloy in the α + β and single β phase field. Mater. Sci. Eng., A 609, 226–234 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, D.L. Chen, Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. J. Alloy. Compd. 718, 170–181 (2017)CrossRefGoogle Scholar
  16. 16.
    N.-K. Park, J.-T. Yeom, Y.-S. Na, Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps. J. Mater. Process. Technol. 130–131, 540–545 (2002)CrossRefGoogle Scholar
  17. 17.
    M.A. Shafaat, H. Omidvar, B. Fallah, Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater. Des. 32(10), 4689–4695 (2011)CrossRefGoogle Scholar
  18. 18.
    E.I. Poliak, J.J. Jonas, Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 43(5), 684–691 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Porntadawit, V. Uthaisangsuk, P. Choungthong, Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Mater. Sci. Eng., A 599, 212–222 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Zhang, C. Yi, G. Chen, H. Qin, C. Wang, Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy. Metals Open Access Metall. J. 6(7), 161 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jiangwei Zhong
    • 1
  • Pan Tao
    • 1
  • Qingyan Xu
    • 1
    Email author
  • Baicheng Liu
    • 1
  • Zhijun Ji
    • 2
  1. 1.Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.AECC Beijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations