Advertisement

Microstructure and Room-Temperature Fracture Toughness of Nb–Ti–Si In Situ Composite Prepared by Selective Laser Melting

  • Yongwang KangEmail author
  • Fengwei Guo
  • Ming Li
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The chemical composition, phase category, and distribution of ternary Nb–Ti–Si in situ composites prepared by arc-melting and selective laser melting (SLM) were investigated by X-ray diffraction and scanning electron microscope equipped with energy dispersive spectroscopy. The room-temperature fracture behaviors were examined by three-point bending tests. SLM would refine the microstructure of Nb–Ti–Si composite, and the finer microstructure was benefit to increase the room-temperature fracture toughness of the corresponding material.

Keywords

Intermetallic In situ composite Microstructure Room-temperature fracture toughness 

Notes

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2017YFB0702904).

References

  1. 1.
    J.C. Zhao, J.H. Westbrook, MRS Bull., (September) 622–627 (2003)CrossRefGoogle Scholar
  2. 2.
    B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, Metall. Mater. Trans. A 34, 2043–2052 (2003)CrossRefGoogle Scholar
  3. 3.
    X.J. Li, H.F. Chen, J.B. Sha, H. Zhang, Mater. Sci. Eng. A 527, 6140–6152 (2010)CrossRefGoogle Scholar
  4. 4.
    Y.W. Kang, S.Y. Qu, J.X. Song, Y.F. Han, Acta Metall. Sin. 44, 593–597 (2008)Google Scholar
  5. 5.
    Y.X. Tian, J.T. Guo, G.M. Cheng, L.Y. Sheng, L.Z. Zhou, L.L. He, H.Q. Ye, Mater. Des. 30, 2274–2277 (2009)CrossRefGoogle Scholar
  6. 6.
    L.N. Jia, X.J. Li, J.B. Sha, H. Zhang, Rare Metal Mater. Eng. 39, 1475–1479 (2010)Google Scholar
  7. 7.
    R. Dicks, F. Wang, X.H. Wu, J. Mater. Process. Technol. 209, 1752–1757 (2009)CrossRefGoogle Scholar
  8. 8.
    Y.W. Kang, S.Y. Qu, Y.F. Han, J.X. Song, D.Z. Tang, Mater. Sci. Forum 561–565, 423–426 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Jia, X.P. Guo, Rare Metal Mater. Eng. 36, 1304–1308 (2007)Google Scholar
  10. 10.
    J.T. Guo, Y.X. Tian, L.Y. Sheng, L.Z. Zhou, H.Q. Ye, Int. J. Mater. Res. 99, 1275–1279 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Qi, X.P. Guo, J. Inorg. Mater. 24, 1219–1225 (2009)CrossRefGoogle Scholar
  12. 12.
    X.D. Tian, X.P. Guo, Surf. Coat. Technol. 203, 1161–1166 (2009)CrossRefGoogle Scholar
  13. 13.
    X.D. Tian, X.P. Guo, Surf. Coat. Technol. 204, 313–318 (2009)CrossRefGoogle Scholar
  14. 14.
    D.A. Curry, Nature 276, 50–51 (1978)CrossRefGoogle Scholar
  15. 15.
    S. Kim, S. Lee, B.S. Lee, Mater. Eng. A 359, 198–209 (2003)CrossRefGoogle Scholar
  16. 16.
    S.X. Li, G.R. Cui, J. Appl. Phys. 101, 083525 (2007)Google Scholar
  17. 17.
    D. Liu, S.Q. Zhang, A. Li, H.M. Wang, J. Alloys Comp. 485, 156–162 (2009)CrossRefGoogle Scholar
  18. 18.
    Y.D. Wang, H.B. Tang, Y.L. Fang, H.M. Wang, Mater. Sci. Eng. A 527, 4804–4809 (2010)CrossRefGoogle Scholar
  19. 19.
    Y.W. Kang, S.Y. Qu, J.X. Song, Q. Huang, Y.F. Han, Mater. Sci. Eng. A 534, 323–328 (2012)CrossRefGoogle Scholar
  20. 20.
    J.-C. Zhao, B.P. Bewlay, M.R. Jackson, Alloying and phase stability in niobium silicide in-situ composites, in Structural Intermetallics 2001, ed. by K.J. Hemker, D.M. Dimiduk et al. (TMS, Warrendale, PA, 2001), pp. 483–491Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Science and Technology on Advanced High Temperature Structural Materials LaboratoryBeijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations