Advertisement

Microstructural Evolution and Phase Transformation of Al–Mg–Si Alloy Containing 3% Li During Homogenization

  • Xiaokun Yang
  • Baiqing XiongEmail author
  • Xiwu Li
  • Lizhen Yan
  • Zhihui Li
  • Yong’an Zhang
  • Hongwei Liu
  • Shuhui Huang
  • Hongwei Yan
  • Kai Wen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The microstructural evolution and phase transformation of cast Al–1.5Mg–0.6Si–3Li (mass %) alloy during homogenization were investigated. The results show that severe dendritic segregation exists in the as-cast ingot. Mg and Si elements segregate at grain boundaries to form intermetallic Mg2Si phase. In addition, there also exists Li-containing phases, including T-Al2LiMg and δ-AlLi phase in the α-Al matrix. These Li-containing phases completely dissolve into the matrix and the segregation of dendrite is eliminated after homogenization at 570 °C for 24 h. During the homogenization, most of the Mg2Si phase at grain boundaries disappear, but AlLiSi ternary compounds precipitate and disperse at interior and boundary of grains because of the strong binding capacity between Li and Si element. The AlLiSi phase is detrimental to the properties of the alloy, therefore homogenization treatment may be not profitable for microstructural refinement of Al–1.5Mg–0.6Si–3Li alloy.

Keywords

Al–Mg–Si alloy Al–Li alloy Homogenization treatment Phase transformation 

Notes

Acknowledgements

This study was supported by The National Key Research and Development Program of China (No. 2016YFB0300802).

References

  1. 1.
    T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Abd El-Aty, Y. Xu, X. Guo et al., Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J. Adv. Res. 10, 49–67 (2018)CrossRefGoogle Scholar
  3. 3.
    R.J. Rioja, J. Liu, The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 43, 3325–3337 (2012)CrossRefGoogle Scholar
  4. 4.
    E.J. Lavernia, T.S. Srivatsan, F.A. Mohamed, Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys. J. Mater. Sci. 25(2), 1137–1158 (1990)CrossRefGoogle Scholar
  5. 5.
    S.Y. Betsofen, V.V. Antipov, M.I. Knyazev, Al-Cu-Li and Al-Mg-Li alloys: phase composition, texture, and anisotropy of mechanical properties. Russ. Metall. (Met.) 4, 326–341 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Giummarra, B. Thomas, R.J. Rioja, in New Aluminum Lithium Alloys for Aerospace Applications. Proceedings of the Light Metals Technology Conference 2007, Quebec, Canada (2007)Google Scholar
  7. 7.
    N.E. Prasad, A.A. Gokhale, R.J. Wanhill, Aluminium-Lithium Alloys Processing, Properties, and Applications (Elsevier, UK, 2014)Google Scholar
  8. 8.
    W.S. Miller, L. Zhuang, J. Bottema et al., Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280(1), 37–49 (2000)CrossRefGoogle Scholar
  9. 9.
    O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications—a review. Mater. Sci. Eng. A 336(1–2), 249–262 (2002)CrossRefGoogle Scholar
  10. 10.
    J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems. Acta Mater. 51(19), 5775–5799 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Ud Din, J. Kamran, N.H. Tariq et al., The synergistic effect of Li addition on microstructure, texture and mechanical properties of extruded Al-Mg-Si alloys. Mater. Chem. Phys. 174, 11–22 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Ud Din, B.A. Hasan, N.U.H. Tariq et al., Effect of Li addition on microstructure and mechanical properties of Al-Mg-Si alloy. Int. J. Mater. Res. 8(105), 770–777 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Chen, Z. Huang, C.Q. Chen et al., Thermodynamic calculated and TEM observed microstructure of Al-Li-Mg-Si alloys. Mater. Sci. Eng. A 280(1), 146–150 (2000)CrossRefGoogle Scholar
  14. 14.
    R. Chen, C.Q. Chen, Z. Huang et al., The precipitation and mechanical properties of Al-Li-Mg-Si alloys. Mater. Sci. Forum 331–337, 1375–1380 (2000)CrossRefGoogle Scholar
  15. 15.
    J.A. Österreicher, M. Kumar, A. Schiffl et al., Secondary precipitation during homogenization of Al-Mg-Si alloys: influence on high temperature flow stress. Mater. Sci. Eng. A 687, 175–180 (2017)CrossRefGoogle Scholar
  16. 16.
    J.M. Silcock, The structural ageing characteristics of Al-Cu-Li alloys. J. Jpn. Inst. Met. 88, 357–364 (1960)Google Scholar
  17. 17.
    Z.W. Huang, R.E. Smallman, M.H. Loretto et al., Influence of lithium additions on precipitation and hardening of 6061. Mater. Sci. Technol. 7, 205–212 (1991)CrossRefGoogle Scholar
  18. 18.
    Z.W. Huang, M.H. Loretto, R.E. Smallman et al., Mechanism of nucleation and precipitation in 6061-Li alloys. Mater. Sci. Technol. 10, 869–878 (1994)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, Z. Zheng, J. Li et al., Microstructural evolution and mechanical properties of a new Al-Cu-Li-X alloy at different solution temperatures. Rare Met. (2016)Google Scholar
  20. 20.
    A.K. Niessen, F.R. De Boer, R. Boom et al., Model predictions for the enthalpy of formation of transition metal alloys II. Calphad 7(1), 51–70 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaokun Yang
    • 1
  • Baiqing Xiong
    • 1
    Email author
  • Xiwu Li
    • 1
  • Lizhen Yan
    • 1
  • Zhihui Li
    • 1
  • Yong’an Zhang
    • 1
  • Hongwei Liu
    • 1
  • Shuhui Huang
    • 1
  • Hongwei Yan
    • 1
  • Kai Wen
    • 1
  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGRINM Group Co. Ltd.BeijingChina

Personalised recommendations